
Systemic Risk of Modelling

Continuity is... 
adapting our response
to your risk management 
requirements



Investing in a better understanding of risk 

2 

 

Simon Beale 

Group Chief Underwriting 

Officer, Amlin plc 

Over recent years we have become more and more reliant upon technology within 

our personal and business lives.  A car driver’s reading of directions from maps and 

street signs has become less necessary with the advent of satellite navigation 

devices.  The technology quickly becomes taken for granted, old skills become 

redundant and behaviours change. Some studies have suggested that people drive 

faster and take less notice of their surroundings (including pedestrians) as they gain 

greater confidence from the dashboard device – the risk is therefore heightened.    

Translated to the financial markets such reliance has proven catastrophic.  In 2008 

Lehman Brothers collapsed.  The technology developed to control the risks both in 

Lehman’s, rating agencies and connected banks failed – the models were flawed, 

the behaviours were inappropriate for the unmodelled reality and the result was 

severe contagion in the financial markets. 

The insurance market largely escaped this contagion, and research led by the 

Geneva Association has firmly established that our industry is a source of stability for 

the financial system, rather than a contributor to its systemic risk.  But we are, 

perhaps equally, vulnerable to such scenarios, where modelled expectations of risk 

do not reflect reality and / or modelled output is taken for granted. In such 

situations, human behaviour becomes complacent and reaction to the real world 

may be inappropriate or impossible due to a lack of relevant experience or know-

how. 

Amlin recognises this threat to its business, but also to the insurance market as a 

whole. Amlin has therefore commissioned the Future of Humanity Institute at Oxford 

University’s Oxford Martin School to research the Systemic Risk of Modelling. In 

order to aid the understanding of how such risk may impact the insurance market, 

the research has a strong collaboration across the insurance industry and academia 

– Amlin is not just funding the research but also taking an active role, with insurance 

practitioners testing academic ideas. Amlin is also encouraging clients, partners, 

market commentators and competitors to engage in the findings to help raise 

standards and deliver durable benefits for the insurance market. 

I am grateful to the entire team who have coordinated the production of the initial 

papers for this research. I believe it is an important first step in understanding better 

the risks we face and ensuring that our reliance on the increasing amalgamation of 

models does not prove catastrophic for the insurance industry. 
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Over the past few years, systemic risk has grown into a major topic of interest for a 

variety of fields.  Financial collapses and the increasing interconnectedness of key 

institutions suggest that the study of systemic risk warrants serious consideration.  

Some risks have extremely high stakes, so failure to understand and characterise 

these phenomena could be catastrophic. 

The source of these risks varies according to the field.  In ecology, systemic risks can 

emerge through networks of species, whereas in finance, these networks form 

between banks or other institutions.  The connections can take a variety of forms as 

well. They can form by holding similar assets or sometimes through widespread 

usage of similarly flawed models.  The latter is of particular interest to us, as biases 

of human risk cognition and structural group-think can stymie our ability to make 

accurate judgments. 

This challenge is especially notable when such judgements are outsourced to a set of 

prescribed models or heuristics.  When the assumptions of such models are not 

thoroughly questioned, ubiquitous acceptance of the model can result in systemic 

issues.  If groups designing or implementing the models have biases or conflicts of 

interest, these issues can be compounded further. 

We are therefore interested in how modelling practices can contribute to systemic 

risk.  Flawed models are not simply poor predictors of reality, they are creators of 

externalities.  Modelling practices are spread and adopted through networks, 

typically under the assumption that others in the network are using dissimilar 

models.  While many models attempt to quantify systemic risk, we invert the 

question and ask, "what systemic risks emerge from modelling?" 

Our challenge lies in determining not only how these models are constructed, but 

how the framework of construction and the context in which they are applied relates 

to the broader market.  We are therefore delighted to partner with Amlin in a shared 

effort to think about these issues and understand the risk.
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“God, Grant us the serenity to accept the things we 
cannot change, the courage to change the things we can, 
and the wisdom to know the difference.”  
 
‘The Serenity Prayer’, popularised by the Alcoholics Anonymous, might sound very 
remote from our world of insurance and risk modelling. But the prayer is 
fundamentally about “change”, and one of the most profound changes our industry 
has experienced in the last two decades is the increasing influence of quantitative 
models. To take catastrophe models as an example: 

 
 Twenty years ago, only a handful of avant-garde (re)insurers would be running 

catastrophe models, deployed on 100MHz single-core desktops; 

 Nowadays, catastrophe models are widespread throughout the industry, with: 

- investments in enterprise deployments of over 100 cores, running 

at 2Ghz, being fairly common; and 

- cloud-based solutions around the corner. 

This change is not limited to our industry. Without the aid of increasingly advanced 

computer-based models, the human brain would be unable to navigate in today’s 

globalised world. From spreadsheets to statistical models they underpin power and 

energy supply, global goods transport, traffic, weather forecasts, climate, 

population and financial models. Models are everywhere. They try to simplify 

complex systems to support rational decision making. 

These models are an abstraction of reality; but they are only as good as: 

 The quality of their input; 

 The completeness and relevance of the abstraction (i.e. the theoretical 

model); 

 The strength of the algorithms and assumptions used; and  

 The competence of the interpretation of the results. 

These limitations create risk in the usage of models; and very often we are not or 

only partially aware of them. 

Their failure might mean the failure of the entire system. The recent financial crisis 

exemplified this in an extraordinary way, but what would be the consequences of a 

failure of global transport, climate or power supply models? 

We have learnt to use the models, but have we learnt to manage them? Do we 

manage the risk of being increasingly reliant on these models? The change is 

reality. Have we learnt to manage this change? 

In insurance, models are widespread. Financial modelling, capital adequacy 

calculations, the calculation of premium and risk are model applications used by all 

industry participants. They are often based on the same applications, using the 

same or similar source data. 
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This is inevitable. Going back to using 16% of premium as 

a risk measure or using single scenario extrapolation or 

1per mille of TSI as Loss Costs on reinsurance business is 

not an option. These were first steps that have led us 

towards quantitative modelling today. 

Shareholders, regulators, competitors and clients drive 

insurance towards model-based management. Simply 

because the traditional, factor based approach isn’t able 

to capture the complexity of the insurance business. The 

usage of modelling has very quickly developed towards 

an industry standard. 

 

The rapid surge in model usage creates the potential for 

a systemic risk in our industry, by exposing it to our 

behavioural biases. 

 

The purpose of the research being sponsored by Amlin is 

to highlight how, like many good medicines, quantitative 

models can have side-effects as well as the intended 

benefits. The research team hope to gain insights into the 

wider topic of the systemic risk of modelling, through 

analysing the specific question of catastrophe modelling 

in (re)insurance and looking into what systemic risks 

emerge and what tools and methods can be applied to 

manage these new risks.  

 

Amlin’s interest is to identify tools and methods to better 

manage our risk, and to discuss these approaches within 

the industry. Ultimately we wish to become a more stable 

and sustainable counterparty for our business partners.  

 

The Quiet Revolution 

In our mind, the title of Susan Cain’s book “Quiet: The 

Power of Introverts in a World That Can’t Stop Talking” 

most adeptly describes the quiet but steadfast 

progression of modelling within our business. 

 

From the first Life Mortality Tables in the late 17th Century 

to the Internal Models in the Solvency 2 regime, our 

industry has embraced quantitative models whenever 

they were beneficial to the business. To a large extent, 

however, adopting modelling technology has been a 

passive process and not considered to be core to the 

(re)insurance business; unlike, for instance, the fund 

management industry. 

Intended Benefits 

The benefits of quantitative models are undeniable, which 

explains the speed of their adoption by the market and its 

regulators. 

 

By providing a consistent, informed assessment of the 

risks within our business, quantitative models have 

helped (re)insurers on several fronts: 

 Risk Management: the ability to manage risk on a 

probabilistic basis, and compare the riskiness of very 

different types of exposures (e.g. life assurance vs. 

property catastrophe);  

 Portfolio Management: the ability to measure the 

risk-return profile of the current portfolio, and 

produce alternative “what if” scenarios;  

 Technical Pricing: the ability to measure the 

expected cost associated with a specific contract, 

and compare the relative value of alternative policy 

structures. 

 

These benefits have helped to partially “de-risk” the 

business of (re)insurance, by providing a control 

framework; thereby lowering our “cost of capital” and 

enabling more affordable (re)insurance in the market. 

 

Potential Side Effects 

While the introduction of quantitative models in each 

individual aspect of the business should strengthen it, 

they could also make the system more fragile and 

vulnerable to error or misuse; thereby exposing the whole 

to a larger systemic failure. 

 

For instance, we now operate in an environment in which 

quantitative models typically underpin: 

 Technical Pricing; 

 Exposure Management & Realistic Disaster 

Scenarios; 

 Enterprise Risk Management; 

 Regulatory Capital & ORSA Reporting; and 

 Rating Agencies’ Financial Strength 

Assessments. 

 

This widespread institutionalisation of quantitative 

models across all the different layers of defence means 

that: 
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 An organisation is more exposed to model error, 

e.g. a “black swan” event not adequately 

apprehended by the models; and  

 There is sometimes a lack of appreciation that 

“not all models are created equal”, and that they 

are supported by varying levels of research, 

statistical credibility and data quality. 

 

The multiple natural catastrophe events experienced by 

the (re)insurance industry in 2011 provided a vivid 

illustration of these weaknesses. The market had to face 

non-modelled exposures (e.g. Thailand floods); non-

modelled perils (e.g. Japan Tsunami); and unexpected 

modelled events (e.g. Japan earthquake over Mw 9; New-

Zealand earthquake with ultra-liquefaction), most of 

which were typically poorly catered for by the models, if 

at all. We could conclude that every time the limits of the 

models are tested, the models fail.  

 

This risk is also present across our industry, where the 

models are surprisingly similar; coming from the same 

pool of talent and subject to the same regulatory 

approval. The same models are then calibrated with the 

same factors. For example, the largest flood in France is 

assumed to be 10bn Euro and the industry calibrates to 

this number.  

Human, All Too Human 

The existence of model error, popularised by George 

Box’s famous quote “all models are wrong but some are 

useful”, is reasonably understood by practitioners in the 

market. 

 

Our industry is, however, much less familiar with the risks 

arising from the behavioural aspects of the modelling 

process; or, in other words: how, in human hands, “all 

models are wrong, but even the useful ones can be 

misused”. 

 

Thinking, Fast and Slow 
Quantitative models have the significant advantage of 

scaling up with technological progress. Unlike expert 

judgment which is limited in speed and footprint, models 

become faster and more advanced as technology 

improves. 

 

Often, however, the gains in calculation speed are 

translated into a higher reporting frequency without 

necessarily a full appreciation for the critical, qualitative 

difference between, for example: 

 A Chief Underwriting Officer receiving a quarterly 

report on the risk profile of the portfolio, 

supported by qualitative commentary from his 

Chief Pricing Actuary highlighting the limitations 

of the analysis; and 

 The same Chief Underwriting Officer accessing 

the same figures daily, on a self-service basis at 

the press of a button. 

 

These two types of reporting have a purpose adapted to 

different tasks. To draw a parallel with Daniel 

Kahneman’s “Thinking, Fast and Slow”: the slower and 

more deliberative approach is better adapted to more 

strategic situations, while the faster, instinctive reporting 

is best suited to monitoring contexts. 

 

Without the awareness of this distinction, the temptation 

is great, however, for the Chief Underwriting Officer to 

rely on the faster, automated reporting for strategic 

decisions; leading to a “dumbing down” of the decision 

making process as a result of technological automation. 

 

Limited Gene Pool 
Unlike expert judgment, quantitative models are based 

on transparent assumptions, which can be adapted in 

order to improve predictive power or adapt to 

environmental changes over time. Similarly, a model 

identified to not be fit-for-purpose would quickly be 

disregarded if it did not adapt appropriately. 

 

This evolutionary process is a powerful force, which has 

helped our industry get better and better models over 

time. But we must recognise that the institutionalisation 

of quantitative models can lead to structural “groupthink” 

and “limit the gene pool” by reducing the potential for 

model diversity. 

 

Historically, the regulatory frameworks did not interfere 

with the (re)insurers’ freedom to select and use models 

as they deemed fit. The regulatory rules for setting 

minimum capital requirements complemented the 
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internal risk management perspective, with an 

independent view and an additional layer of defence. 

 

The Internal Models in the UK ICAS and the coming EU 

Solvency 2 regimes (mimicking the Basel 2 regulations 

for financial institutions) have, however, taken a widely 

different stance. In essence, the setting of minimum 

capital requirements is outsourced to the (re)insurer if its 

Internal Model is approved by the regulator: 

 Internal Model Approval requires the regulator to 

be comfortable with the model, which could limit 

the range of potential approaches and possibly 

introduce “asymmetrical error checking” (i.e. 

mostly scrutinising the models which do not fit 

expectations or preferences); 

 The Documentation Standards require sufficient 

details to enable the Internal Model to be 

justifiable to a third party, possibly restricting the 

reliance on expert judgment and slowing down 

the introduction of innovation; and 

 The Use Test requires that the Internal Model be 

used for risk management and key decision 

processes, which restricts the usage of 

alternative models within the organisation. 

 

The risk for our industry is that we are unconsciously dis-

incentivising the emergence of alternative approaches, 

which are vital for a fully functional evolutionary process. 

 

Principal-Agent Dilemma 
The large investments required to build sophisticated 

representations of (re)insurers’ risks and the scalability of 

quantitative models, point to significant economies of 

scale from centralising and outsourcing their 

development to third-party vendors. 

 

For instance, many (re)insurers license proprietary 

Economic Scenario Generators or Catastrophe Models 

from third-party vendors who generate the investment in 

talent and R&D. 

While the financial benefits of outsourcing model-building 

to third-party vendors are often clear, the associated 

“outsourcing of cognition” presents some challenges in 

itself: 

 

 The divergence in principal-agent interests might 

lead third-party vendors to be influenced by 

other priorities than modelling quality (e.g. 

production costs, sales potential, social and 

political context); 

 (Re)insurers have reduced incentives to invest in 

modelling knowledge and talent, to the point 

that their decision-makers could become over-

reliant on the “autopilot” and unable to critique 

or even function without it; 

 The oligopolistic nature of markets with large 

economies of scale, allows the few players to be 

more authoritative as central source of 

knowledge, than is justified by the quality of 

their models alone. 

 

Unfortunately, the more the industry tends to rely on a 

single source of knowledge, the smaller the upside when 

it gets things right and the greater the downside when it 

gets things wrong (as, one day, it inevitably will). 

 

In Search of Sustainable Modelling 

Having identified how the usage of quantitative models 

can introduce a systemic risk within an organisation and 

within the industry, the key questions are: 

 

 How do we manage this risk, which is behavioural in 

nature? 

 How do we educate users of model results about the 

potential pitfalls? 

 How do we develop a sustainable, robust usage of 

models within our business and within the industry? 

 Is there a generation gap developing in the 

acceptability of model vs. reality? 

 

Our standard approach of “quantifying the risk using a 

model” seems clearly inappropriate on its own, as it 

would compound the risk rather than mitigate it. Model-

independent approaches for risk management can be 

useful, but they remain more of a complement than a 

supplement. 
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In the words of Albert Einstein, “problems cannot be 

solved with the same mind-set that created them”. 

 

Our collaborative research project with the Future of 

Humanity Institute (“FHI”) at Oxford Martin School looks 

at our industry as a “human experiment” rather than a 

business. 

 

We are hoping that combining our knowledge with this 

behavioural perspective could bring rich insights for our 

industry, and for the understanding of Systemic Risk in 

general… so that one day, we will have the serenity to 

accept the things we cannot model, the courage to 

model the things we can, and the wisdom to know the 

difference. 

 

 

 

 

 

 

 

 

 

 

 

The FHI-Amlin Research Collaboration on Systemic Risk of Modelling 

This project will pursue better understanding and management of systemic risk through the strategic collaboration 

between the Future of Humanity Institute at Oxford University and Amlin.  

 

Systemic risks concern the unexpected collapse of an entire market, methods of doing business or methods of modelling, 

and are of great importance to managing risk on the large scale. The collaboration will be enabling research into how 

systemic risks emerge and can be managed, disseminating this research within Amlin and outside, and educating towards 

a self-sustaining culture of accurate thinking about risk. 

 

Risks that emerge from complex decision-making, including decision-making about risk itself, are the main focus of 

interest in this project. Distributed thinking in organisations, the increasing use of complex models, and a rapidly changing 

world pose many understudied challenges that FHI and Amlin are well placed to explore together in order to find better 

ways of managing large scale risks.  

 

This includes the problems of systemic risk in catastrophe modelling, how to maintain necessary institutional critical 

thinking despite biasing incentives, how to validate complex models, and how to handle changing uncertainty.  
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White Paper Context 
This paper explores the definition of systemic risk, clarifies how it differs from 

systematic and system risks, and presents the circumstances through which such 

risks can develop or manifest. 

 

It does not seek to distil a single definition. Instead it highlights numerous 

variations in meaning that depend on context, and attempts to extract the 

common core concepts that run through each. 

 

A key finding is that parts of a system may function well individually, but  become 

vulnerable to a joint risk when connected, leading to a spread of risk that 

potentially affects the entire system. 

 

It provides a unique challenge as, unlike other risks, adaptation and risk 

mitigation (including regulation) are not separate from the system, and can 

actually increase the systemic risk. Additionally much of the risk comes from the 

structure of the system, which is often constrained, making strong changes 

infeasible. 

Industry Relevance 
Insurance plays an understated and undervalued role in the world economy, 

through the provision of risk transfer mechanisms to enable wealth-creating 

entities to manage their exposure to an array of perils.  In the absence of 

insurance mechanisms these entities would have to carry significantly more 

capital, much of it unused, or be prone to a wholly unacceptable risk of ruin. 

 

At a micro level, individuals similarly rely on insurance risk transfer to deal with 

elements of fortuity in their lives.  Fundamental to the provision of risk transfer is 

the belief from buyers that insurers’ “promise to pay” is both reliable and 

effective.  Insurers have the responsibility to maintain processes so that they are 

able to charge an adequate price for this risk transfer product, ensure that 

exposures are fully understood and reserved for, and that the risk capital being 

carried is sufficient to meet extreme circumstances.  Therefore risk management 

processes in insurers are of critical importance to all stakeholders in an insurance 

enterprise, most particularly shareholders, policy holders and regulators. 

 

As insurers’ risk management structures, tools and models have developed in 

recent years, practices and methodologies have converged.  This is a result of the 

development of accepted proprietary models and is driven by regulators’ 

understandable requirements for levels of practice to be enhanced, reviewed or 

even benchmarked. 
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Systemic risk is greater in an environment where 

commonality of approach and methods overrides 

differing human and manual activities. This is apparent 

in many insurers’ basic systems for pricing risk, 

reserving for future liabilities, management and 

modelling of exposure and in economic capital 

modelling.   

 

This development accompanies a far wider change in 

the structures of international financial markets and the 

scope of large firms.  Insurers were historically single 

territory or even specialised in one sector.  Today many 

have diversified to multi-territory and most are multi-

line.  Globalisation has led to far greater multi-national 

operations and interconnectedness of risk between and 

among insurers; another key example of the 

interconnectedness of financial markets in the modern 

global economy. 

 

This convergence carries a significant long-term risk to 

the industry.  In common practice lies common 

Weakness. Consequently, whilst insurance entities and 

the industry as a whole may be very well prepared for 

the risks covered by common risk management systems, 

it may be unprepared for “black swan” type risk events 

which may expose risk system inadequacies.  These 

potential weaknesses in the sector could critically 

undermine the confidence of policyholders, shareholders 

and regulators and undermine a vital component of the 

modern economy. 

Next Steps 
This white paper sets the scene for further research, in 

particular: 

• Attempting to model and understand 

institutional group-think, through modelling of 

small markets and modelling itself (creating a 

“metamodel”). 

• Developing qualitative tools to assist with 

analyses of systemic model risk and 

catastrophe modelling. 
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Introduction 

Systemic risk is a term that is widely used, yet ill defined. This paper will explore 

some of the meanings of systemic risk and related concepts such as resilience. The 

aim is not to distill a single, better definition, but rather to analyse core concepts 

that are important for reasoning about, predicting and mitigating systemic risks. 

 

 
Figure 1: Google n-gram data for use of "systemic risk" in their corpus of scanned English books. 

 

The use of “Systemic risk” as an expression grew tremendously across the 1990s, 

likely as part of the general move towards a “risk society” that began in the post-

Cold War era1. It might have peaked a few years back, although uncertainties in 

measuring methods make this somewhat tentative. Examining Google trends (the 

number of searches for a term) show that the number is still increasing – and one 

of the most common searches is for “definition systemic risk”.  

 

Like many evocative terms such as “complexity” and “resiliency”, “systemic risk” 

might seem somewhat intuitive when used. Unfortunately this evocativeness also 

makes different people and groups use it in divergent ways that actually mean 

different things.  

 

The contrasting term “resiliency” has similar issues. It was originally proposed as a 

scientific term in ecology by Holling in 19732 (a measure of a system's ability to 

maintain its operational integrity). Increasingly the term is used frequently in 

economics, psychiatry, robotics, medicine, military strategy, governance and other 

disciplines.3 One of the reasons is the intuition that underlying patterns of resilient 

systems or methods of increasing resiliency might be applicable across disciplines.  

 

When the usage was actually studied in detail4 it turned out that there were more 

than a dozen definitions and understandings local to different disciplines.  

                                                      
1 In sociology the concept of a “risk society” is a society that is increasingly preoccupied with the future, safety 
and observing itself and its processes, and hence focuses on risk and risk management. (Beck 1992) 
2. (Holling 1973) 
3 http://chronicle.com/article/That-Elastic-Term-/138917 
4 (Downes et al. 2013) 
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Because of these multiple definitions one should not 

therefore expect statements about systemic risk (or 

resiliency) to directly carry between different groups. 

Conversely, even when overarching insights might be 

possible, they might not be recognized because different 

groups misunderstand each other. Hence confusion about 

definitions can impair mitigation efforts5. 

 

To make matters worse there might even be a degree of 

observer dependence. Alan Greenspan observed that6 

although: 

“[i]t is generally agreed that systemic risk 

represents a propensity for some sort of financial 

system disruption[,] one observer might use the 

term ‘market failure’ to describe what another 

would deem to have been a market outcome that 

was natural and healthy, even if harsh.” 

 

Even defining the edges of the system is fraught. One 

common feature of “black swans”7 is that they represent 

an unexpected influence via links to markets or 

phenomena not normally considered part of the system 

under study. Since little or no effort had gone into 

analysing them, the impact has more disruptive effects 

than it would otherwise have had. In other words, a black 

swan that has been predicted and analysed, is not a black 

swan. 

However, all this does not mean the word “systemic” is 

irrelevant: as we will see what matters is more how things 

are connected than where boundaries are drawn. 

 

                                                      
5 (Liedtke 2010)  
6 (Greenspan 1995)  
7 (Taleb 2007) 

Financial systemic risk 
The original use of systemic risk comes from finance, 

where the concept was spread in the mid-1990s. Since 

then usage has spread outside finance, for example into 

safety engineering8, and generalised. We collected a 

sampling of definitions of systemic risk (Appendix), using 

them to study how the concept is used. 

 

Contagion affecting the whole system 
George G. Kaufman described systemic risk in a review9 as  

“the risk or probability of breakdowns (losses) in an 

entire system as opposed to breakdowns in individual 

parts or components and is evidenced by 

comovements (correlation) among most or all the 

parts.” 

The effect on the entire system due to correlated action of 

the parts is a common implicit assumption, but relatively 

often unstated .  

 

Kaufman looks at three types of definition that covers 

much of the financial usage. The first is the role of 

causation. It is common to denote a simultaneous shock 

that affects the whole market or system adversely as a 

systemic risk. In current usage this is a systematic risk 

rather than systemic risk (see below). Here the cause is 

external to the system rather than internal. 

 

Second, many definitions focus on contagion, spillover or 

chain reaction effects. Here causation flows from one firm 

or institution to another, for example if one default leads 

to the next. This type of behaviour requires strong 

linkages, a hallmark of systemic risks that many authors 

have focused on10.  

For example, Steven L. Schwarcz11: 

 “We can reach a working definition of systemic risk: the 

risk that (i) an economic shock such as market or 

institutional failure triggers (through a panic or 

otherwise) either (X) the failure of a chain of markets or 

institutions or (Y) a chain of significant losses to financial 

institutions, (ii) resulting in increases in the cost of capital 

or decreases in its availability, often evidenced by 

substantial financial-market price volatility” 

                                                      
8 (Reniers, Sörensen & Dullaert 2012)  
9 (Kaufmann 2000) 
10 For example, (Markose et al 2009, May & Arinaminpathy 2010, Cont et al 
2011, Haldane & 
May 2011, Battison et al 2012) 
11 (Schwarcz 2008) 
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Finally, spillover can occur without strong linkages that 

directly cause subsequent collapses. This can for example 

happen when the parties have similar risk exposure, and 

adapt to each other. An adverse shock to a firm causes 

other firms to react to this uncertainty, for example by 

examining other units they have interests in for similar 

exposure and withdrawing as soon as possible. This 

causes liquidity problems or other adverse events, making 

it even more rational for other firms to withdraw. In this 

kind of “common shock” situation there is weak causation: 

no single agent is the cause of the trouble of any other 

agent, yet there is a correlated pattern leading to an 

adverse outcome.  

 

Some authors distinguish between rational/information-

based systemic risk and irrational/random/non-

information based systemic risk. In practice the 

distinction is blurred and might depend on having 

different time-horizons, preferences and prior 

probabilities. There might well be an element of “just 

world” bias in attempting to separate rational systemic 

risks (where there would be guilty parties if innocents 

were harmed) from the more nihilistic random systemic 

risks. Since markets typically contain agents of varying 

levels of rationality, assuming only rational systemic risk 

is also somewhat optimistic. 

Contagion channels and connectivity 
Federal Reserve Governor Daniel Tarullo described four 

common channels of risk proliferation12: 

 Domino effects where the failure of one company 

causes its creditors to fail, causing their creditors to 

fail in turn. 

 Self-reinforcing fire sales when a product serves as 

a financial collateral or in markets where 

participants must post risk-based margin. If a 

failure to pay causes lenders to seize the collateral 

and sell it at a distressed price this causes further 

losses on other holders of the asset, making them 

fail to post margin or default on their loans. 

 Signalling contagion, where the failure of one firm 

signals to investors that other firms in the same 

industry or holding similar assets are likely to be in 

financial trouble. This can be either a rational 

                                                      
12 (Tarullo 2011) 

  

signal, or a panic reaction (bank runs are an 

obvious example).  

 If a firm provides a unique service with no close 

substitutes, its failure might block critical functions. 

This could be a clearinghouse with a monopoly on 

a settlement services in a particular market, or a 

supplier of a minor but key ingredient in an 

industrial process13. 

 

These channels are commonly recognized, although 

mitigating them is of course another matter.  

 

The first two channels are also linked to firm or institution 

size, leading to the too-big-to-fail (TBTF) syndrome (the 

last channel might also be described as “too-connected-to-

fail”). TBTF is also relevant not just as a description of the 

current state of the system but an explanation of why this 

kind of risk emerges. Since a firm regarding itself as TBTF 

expects bailouts if it is in trouble, it hence has less 

incentive to reduce its risks, underprices them, and may 

gain economic advantages that further helps establish its 

dominance14. Even without this moral hazard dynamics, 

TBTF can of course be produced through economics of 

scale and scope, path dependence and oligopolies etc.  

 

Note that each of the channels may in themselves not be 

enough to cause a system failure, but a combination of 

them can have multiplicative effects to worsen the 

situation.  

Clearly high connectivity, either through direct financial 

links or through signalling, enables risk proliferation 

through these channels. Indeed, without connectivity the 

risk is systematic rather than systemic.  

 

The link between system connectivity, contagion and 

systemic risk is an overarching theme that links much of 

the work in the financial literature to the non-financial 

systemic risk literature. Concepts from network theory, 

percolation, and epidemiology may be useful for analysing 

the risks and in particular under what conditions they can 

spread across the system. 

                                                      
13 An interesting example is the 1993 fire at Sumitomo Chemical Company 
which destroyed half of the world’s production of a resin used in chip casing 
manufacturing, causing a worldwide spike in memory prices. 
14 This has been studied both theoretically and empirically. See for example 
(Warburton et al. 2013), (Dam & Koetter 2011)  
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Figure 2: Simple model of cascades in a financial system. Nodes (companies) are randomly connected to each other with a fixed connection 
probability. One node fails, and connected nodes of a failed node have a probability of failing too. The surface shows the mean fraction of nodes in 
the failure cascade. For low probabilities cascades rarely get beyond the initial failure; as the product of connectivity and spread increases cascades 
grow to encompass most of the system. A densely connected system needs to have a very low contagion probability to remain stable. 

 

Densely connected systems easily develop collective 

behaviours, and some of these may pose risk. Figure 2 

shows a simple model of a financial system with 

cascading failures. As the connectedness and 

contagiousness increase it has a fairly sharp transition to 

a vulnerable state where an initial failure is likely to cover 

most of the system. In this simple case the system can 

be analysed thoroughly using percolation theory. More 

complex models may lack the same theoretical clarity but 

often exhibit the same universal behaviour.  

 

For example, Arinaminpathy, Kapadia and May studied 

systemic risks in bank lending networks15: each node in 

the network would correspond to a bank, and each edge 

interbank lending. If a bank goes insolvent its creditors 

may fail too if the shock is larger than their capital 

reserves. The contagiousness of failures depends on the 

proportion of assets in interbank loans, but also market 

confidence and fire sales of assets. They found that when 

the system was stressed by external events cascades 

naturally emerged, with thresholds not dissimilar from 

the above simple model. But more importantly, the role 

of large and small banks in the market could be analysed: 

failures of large banks tended to cause systemic collapse 

because of their high connectivity and large effect on the 

market, but as long as they were adequately capitalized 

they helped protect the system from failures of smaller 

                                                      
15 (Arinaminpathy, Kapadia & May 2012) 
 

banks. Simulations may help understand some of the 

nontrivial interactions between the different contagion 

channels. 

 

Scope and externalities 
Another approach to defining financial systemic risk is 

the pragmatic one taken by the Financial Stability 

Oversight Council16: 

 “There is no single, commonly accepted 

definition of the term systemic risk among 

financial professionals. The FSOC annual reports 

address the definition of systemic risk as follows:  

“Although there is no one way to define systemic 

risk, all definitions attempt to capture risks to  

the stability of the financial system as a whole, 

as opposed to the risk facing individual financial  

institutions or market participants.”  Possible 

features of systemic risks include externalities 

and the fallacy of composition. With 

externalities, there are costs or benefits of 

actions by financial market participants that are 

not borne by those participants. With fallacies of 

composition, what is  true for each individual 

firm in isolation may not be true when all firms 

follow similar  strategies—just as while one 

person standing in a crowded stadium sees 

                                                      
16 (Murphy 2013)  
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better, that strategy will  fail if everyone stands 

at the same time.” 

 

In this case externalities go far outside the common 

usage of systemic risks. They can be viewed as risks 

caused by the market to outsiders, a form of external 

system risk (see below), although of course externalities 

do occur inside markets too. The fallacy of composition 

points at the important emergent aspect of systemic risks 

that make them both scientifically interesting and hard to 

regulate (see the generalised systemic risk section).  

 

Some pragmatic definitions stretch the concept in the 

direction of scope instead. The G10 Report on 

Consolidation in the Financial Sector 200117 suggested a 

working definition that has been widely cited: 

 

"Systemic financial risk is the risk that an event 

will trigger a loss of economic value or 

confidence in, and attendant increases in 

uncertainly about, a substantial portion of the 

financial system that is serious enough to quite 

probably have significant adverse effects on the 

real economy.” 

 

The report argues that the negative externalities must 

deal with the real economy: a pure financial disaster is 

not a systemic risk by this definition. It also suggests 

distinguishing between the direct impact and 

transmission/contagion effects and their “width” (the 

fraction of firms or markets simultaneously affected by 

the impact) and “depth” (the fraction of firms or markets 

subsequently affected by the shock during the 

transmission phase):  

 

“Thus, a systemic financial risk event can be 

viewed as a shock whose impact and 

transmission effects are wide and deep enough 

to severely impair, with high probability, the 

allocation of resources and risks throughout the 

financial and real economic systems.” 

 

Although the definition aims more at defining systemic 

risks as a practical risk for policymakers to handle (and 

why they need to handle it), it again points at the key role 

                                                      
17 https://www.imf.org/external/np/g10/2001/01/Eng/pdf/file3.pdf  

played by contagion/transmission effects and how they 

overspill from the original recipients of the shock – 

including overspill into other systems. Narrowing it to 

only risks that affect the real economy might be relevant 

for the purposes of G10, but appears unnecessarily 

narrow in practice: to a financial company the risk of a 

purely inter-finance collapse is still a systemic risk. 

Socio-technical systems  
A variant of this can be seen in the definitions following 

from the 2003 OECD Emerging Systemic Risks report: 

 

"A systemic risk, in the terminology of this 

report, is one that affects the systems on which 

society depends – health, transport, 

environment, telecommunications, etc." 

 

Here the focus is completely on the target of the risk, not 

the dynamics or causes of the problem. Systemic risks 

are simply those affecting important systems. Another 

very wide definition is found in18 where the key aspect is 

stated to be that the risks are embedded within complex 

social, cognitive and ethical systems. These definitions 

can apply to nearly all important risks, diluting the 

concept of systemic risk far beyond usability19. 

 

                                                      
18 (Renn & Klinke 2004) 
19 However, (Renn & Klinke 2004) does tackle the epistemic problems of 
uncertain and unpredictable risks affecting large-scale systems: terminological 
loseness is not necessarily a sign of irrelevance. 
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Systemic, systematic and system risk 

Systematic risk: when the environment is at fault 
To maximize confusion, systematic risk in finance and 

economics is a separate concept from systemic risk. 

Systematic risk (aggregate risk, market risk or 

undiversifiable risk) represents risk that is shared across 

the market due to events that affect overall market 

returns, income or other factors. It is linked to correlated 

forcings, whether due to disasters, lack of market 

completeness or merely correlated inputs. For example, a 

war, recession or a change in interest rate affects most of 

the market. Systematic risk is largely an exogenous risk: 

it is not so much the markets “fault” (although different 

markets may of course be differently vulnerable to 

systematic risks because of their structure). 

 

This has an ecological analogy in the form of the Moran 

Effect, which states that separate populations of the 

same species will fluctuate in a correlated fashion 

because of correlated environmental fluctuations (for 

example weather). That the same bad winter causes the 

collapse of several populations does not mean the 

collapses caused each other: there was an exogenous 

effect. A systemic ecological risk would be more like the 

spread of a disease or the Allee effects, which makes 

populations close to extinction more vulnerable because 

of their low number.  

 
Figure 3: Example of the Moran effect: three separate populations of animals are simulated subject to an environment where the carrying capacity 
randomly varies in a correlated fashion. Despite each population being separate they end up strongly correlated because of the exogenous input. 

 

Clearly exogenous forcings can make endogenous 

systemic risks worse: a vulnerable market or population 

has less ability to weather an adverse period. From a 

theoretical perspective the most interesting systemic risk 

case is when collapse can occur without any external 

forcing, emerging only from internal dynamics (e.g. 

market crashes triggered by the market generating its 

own news). From a practical perspective understanding 

how large the zone of resilience is matters more: 

exogenous forcings are always present besides the 

internal dynamics. The key question is what properties 

make a system vulnerable to collapse in response to a 

forcing that normally (or in the past) would have been 

manageable, and whether these properties can be 

detected and corrected before disaster. 



Defining systemic risk 
 

20 

System risk: when the structure is at fault 
One possibly valuable conceptual distinction is between 

systemic, systematic and system risk.  

 

A risk may be due to the structure of a system, in which 

case it makes sense to call it a system risk.  

 

A classic form of system is risk is single point of failure: 

one step or function in a larger system is necessary for 

its overall function (e.g. the heart in the body, or a 

router in a computer network). Much reliability 

engineering deals with detecting and removing potential 

single point failures. Unfortunately in complex evolving 

organisations and technical systems it can be hard to 

notice all dependencies. This can evolve into full 

systemic risk, but it can merely remain a bottleneck. 

Bottlenecks that impair function visibly tend to get 

corrected, but true system risks introduce hard-to-notice 

problems (unknown increase in overall risk level, 

reduction of information quality, subtle inefficiencies) 

that only become apparent in retrospect.  

 

Many system risks do not reach the level of threat 

implied by a systemic risk. Systemic risks are a subset of 

system risks that have additional properties – the ability 

to break the entire system, contagion, or other severe 

hazards. Still, mere system risks can be important in 

that they cause costs, friction or lost opportunities.  

 

Some systems exhibit “robust-yet-fragile” dynamics: they 

are highly robust against random disturbances but are 

vulnerable to attacks on certain key components20. This 

makes systems particularly vulnerable to malicious 

intent, but may also hide their inherent fragility in 

unusual situations. 

 

Error correction can make the difference between a 

system risk and a systemic risk. Lloyd’s solution to the 

LMX spiral is an example: they contained the system risk 

and rebooted the system. Any method that allows the 

system to recover (e.g. higher capital requirements, a 

resetting function) could fill that role. Conversely, when 

error correcting abilities are removed, system risk can 

become immediately systemic.  

 

                                                      
20 (Albert, Jeong & Barabási 2000),(Doyle et al. 2005) 

One ironic effect of increasing central coordination in 

order to reduce systemic risk is that it introduces a 

single node (the regulator) connected to every node in 

the system. A failure of the regulatory node can 

introduce correlated risk across the system. 

 

To sum up, systematic risks are exogenously generated 

risks, systemic risks are endogenously generated risks or 

properties of a system that can make a small exogenous 

event snowball, and system risks are misfeatures of the 

system that even if they do not cause a crisis, reduce 

the functionality of the system.   

 

Still, given the potential for confusion we do not 

recommend using the term without clearly explaining it.  
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Complex systems theory and systemic risk 
The generalised use of systemic risk borrows from the 

vision of complex systems theory (which also influenced 

resiliency studies) that many complex adaptive systems 

have fundamental similarities despite their very different 

appearances. This in turn was stimulated by profound 

20th century mathematical results about renormalization, 

structural stability, and universality in chaotic systems: 

surprisingly large classes of apparently unpredictable 

phenomena are governed by the same simple laws 

despite their exact functional form being vastly 

different21.  

 

The complex system view emphasizes the endogenous 

aspects of systemic risks. Complex systems typically 

have many parts interacting in nonlinear ways that can 

include positive feedback loops and internal adaptation. 

This produces potentially paradoxical behavior such as 

random or chaotic activity (limiting predictability), 

multiple attractor states, and sudden jumps and/or 

resistance to external control22. The complex system 

view of systemic risk emphasizes the internal dynamics 

of the system emerging from the structure of its internal 

workings rather than what kind of entities these are.  

 

Ian Goldin and Tiffany Vogel approached systemic risk 

and risk governance from a complex systems angle23: 

“While systemic risk has been seen as a threat 

caused by unpredictable, highly improbable, 

exogenous stochastic events (Albeverio et al., 

2006; Taleb, 2007), we see systemic risk as 

reflecting endogenous structural weakness” 

“While these networks involve the transmission 

of materials, capital, information and 

knowledge, recent decades of intense global 

integration mean that these highly 

interconnected networks also have the potential 

to originate and propagate risk. This central 

property of interconnectedness in networks 

(Jervis, 1997) can be paradoxical in both its 

structure and impacts. Increasingly connected 

networks facilitated by globalization can lead to 

both greater robustness and more fragility” 

 
                                                      
21 (Cvitanović  1989), (Sornette 2003)  
22 (Helbing 2009), (Cleeland 2011)  
23 (Goldin & Vogel 2010) 

 

They use “robustness” in a somewhat idiosyncratic way 

to denote spreading risks across a more interconnected 

network. This way the overall ability to diffuse risks go 

up, but the global correlations also increase, making the 

whole system more brittle.  

 

This definition points out one of the more 

counterintuitive and relevant problems with systemic 

risk management: rational actions in managing risks can 

increase overall risk. A similar observation of the 

paradoxical nature of handling systemic risk was made 

by Doyne Farmer24: 

“Systemic risk occurs when individual actors 

unknowingly create risk through their systemic 

interactions with each other (which they are 

often unable to model). It often occurs precisely 

due to their attempts to lower their own risk.” 

 

A typical example is how reliability of power-grids has 

increased in recent years. However, the size 

distributions of blackouts are power-law distributed and 

have shifted towards fewer, but much larger, blackouts. 

Reducing the number of forest fires leads to build-up of 

undergrowth that can sustain worse fires. Regulations 

reducing risk in a domain may itself lead to risk. 

Increasing agent coordination might allow them to 

model their interactions better, but could produce 

stronger linkages for other systemic risks. And so on. 

 

Attractor states 
Darryll Hendricks25 suggests a more theoretical definition 

from the sciences (besides a near-copy of the G10 

definition) 

"A systemic risk is the risk of a phase transition 

from one equilibrium to another, much less 

optimal equilibrium, characterized by multiple 

self-reinforcing feedback mechanisms making it 

difficult to reverse." 

 

While equilibrium is a common term in ecology and 

economics, strictly speaking we are talking about 

                                                      
24 http://ineteconomics.org/sites/inet.civicactions.net/files/INETSession2-

Lunch-Farmer_0.pdf 
25 
http://www.pewtrusts.org/uploadedFiles/wwwpewtrustsorg/Reports/Economic
_Mobility/PTF-Note-1-Defining-Systemic-Risk.pdf?n=3489 
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attractor states: states the system tends to return to 

when disturbed. This can include time-varying states, 

noisy states or complex “strange attractors”.  

This definition leaves out the causality of what caused 

the transition, but points out that once it has begun the 

structure of the system makes it hard to reverse. There 

is an asymmetry (hysteresis) between the states. A 

classic example is the collapse of the Grand Banks cod 

fisheries, where overfishing caused a transition to a 

different ecological state that persists even when fishing 

stops. 

Another ecological example is the impact of removing 

otters from the North Pacific kelp ecosystem. The otters 

were hunted because they were seen as competing with 

humans for abalone, but were also a major predator of 

sea urchins. Without them the urchins multiplied, killing 

the kelp that was the basis for the rich ecosystem. This 

reduced productivity and diversity precipitously. Sea 

stars took the role as the main predator of urchins and a 

new stable but relatively barren ecosystem emerged.

 

 
Figure 4: Switch of attractor state in a simple ecological model subject to random noise and a gradually worsening external forcing. The blue curve 
represents the productivity of the ecosystem, the dotted green and red curves represent the equilibria without noise. As the forcing increases the 
ecosystem suddenly falls into the low productivity state. Note the slowing and coarsening of fluctuations around the equilibrium as the transition is 
approaches.  

 

Whether the new equilibrium is less optimal may be a 

matter of judgement (sea urchins presumably prefer an 

otter-free environment) but the mere fact that the 

equilibrium is hard to escape might be disadvantageous. 

Complex ecosystems, minds and financial markets have 

many potential modes of function and can shift adaptively 

between them; being stuck in a single state is a sign of 

inflexibility – there are no alternative if future even larger 

shocks occur. 

 

In the ecological resiliency literature resiliency is sometimes 

defined as either the amount of disturbance that a system 

could withstand without changing to an alternative stable 

state, or the speed with which the system returns to a 

stable state after disturbance26. These are often correlated 

                                                      
26 Beside these two definitions, resiliency can be defined in terms of adapting to 
the disturbances. See (Gunderson 2000) 
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to each other, but the first represents the size of the basin 

of attraction of a stable state, the second its “depth”.  

Systemic risk in this case can then be seen as a system or 

parameters causing small, easily escaped attractor states27. 

As the system is pushed close to the edge of the basin 

recovery dynamics tends to slow down (“critical slowing 

down”) and the variance and autocorrelation of fluctuations 

tend to increase. These signs are potential indicators of the 

approach to a tipping point28, although they might not 

necessarily occur for all kinds of systems. 

 

While ecosystems and environmental science might be the 

starting point for a large part of the natural science 

discourse on systemic risk, many results do look 

generalizable to other domains. In particular the celebrated 

result by Robert May that complex ecosystems in general 

are unstable29 does not make use of particular properties of 

them being ecosystems: the result is general for many 

forms of interacting systems, and has recently been applied 

to banking30. 

 

Statistical mechanics of critical systems 
Complex adaptive systems exhibit events on all size scales. 

One reason is that they are often hierarchical structures 

(e.g. an economy contains markets containing companies 

owning assets) but there are also phenomena that naturally 

tend to scale-free statistical distributions such as power-

laws31. The canonical (and sometimes over-used) example is 

the “sandpile models” of self-organized criticality32: the 

system consists of locations where tension (the height of a 

pile of objects, seismic strain, financial risk) can build up. If 

it reaches a critical threshold in a location it is released, 

resetting the location (the pile collapses, the fault moves, a 

company goes bankrupt) but distributing some or all of the 

tension to the neighbouring locations. The result is cascades 

of release. Over time, if tension is continually added to the 

system, it reaches a state where on average as much 

                                                      
27 Compare to engineering, where designs typically have safety factors so that even 
unusually strong disturbances are within design limits and will be dampened out 
by the construction. More comprehensive systems safety engineering will also seek 
to design systems so that the dynamics avoids hazards and possible end-states are 
acceptable. 
28 (Scheffer et al. 2009) 
29 (May 1972) 
30 (Haldane & May 2011)  
31 This includes the Gutenberg-Richter law of earthquake frequency as function of 
magnitude, frequencies of wildfires (Malamud, Millington & Perry 2005), asteroid 
impacts (Chapman & Morrison 1994), landslides (Malamud et al. 2004), city fires 
(Song et al. 2003) and many other systems. 
32 (Bak, Tang, Wiesenfeldt 1987) 

tension is released as is added per unit of time. However, 

the cascades releasing the tension come in all sizes from 

the smallest to cascades affecting the whole system. 

 Their frequency is typically a power law of their size: very 

large adjustments may occur rarely, but there is no size cut-

off besides the size of the entire system. These cascades 

are also triggered by micro-events rather than strong 

external disturbances. 
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Figure 5: Plot of the dynamics of the “sandpile model” over time. Top: starting from an empty state with no tension it gradually fills out reaching a 
dynamically stable state where the influx of tension is equal to the release. Bottom: size of the cascades. As the system reaches equilibrium they 
form a scale free distribution. At time 1000 and 3000 an exogenous “kick” to the system occurs, adding extra tension in a random location. In the 
early case much of the tension remains in the system (the jump in the top curve). In the late case the tension is successfully diffused – but the price 
is ongoing endogenously generated cascades. 

 

Critical systems of this kind have been extensively studied 

in the sciences and may provide insights into systemic 

risks. In a sense systemic risks in this kind of system are 

natural: they serve to release tension just as much as the 

smaller scale cascades. Just like in the wildfire example 

(which can indeed be modelled this way) removing small 

events increases the probability of large events33. A human 

might wish to change the system to reduce the incidence 

of large events, but must then work against the 

implications of the underlying microdynamics34. 

 

                                                      
33 One might even make an analogy with Schumpeter’s concept 
of “creative destruction”: by continually weeding out weakly 
functioning entities the overall system maintains its vitality.  
34 There might also exist optimal levels of interconnectivity or 
other parameters that make the system as efficient as possible 
without too disruptive cascades. See for example (Brummitt, 
D’Souza & Leicht 2012) 

Didier Sornette has analysed the difference between 

endogenous and exogenous shocks in critical systems35. 

He found that at least in some systems (for example, book 

sales, financial volatility, financial crashes) there are clear 

differences in dynamics: externally induced shocks occur 

suddenly and then exhibit a power-law decay as the 

system returns to a stable state. Endogenously generated 

shocks on the other hand exhibit a power-law lead up as 

more and more microevents avalanche. Once the peak is 

reached the system shows a symmetric return to stability 

as the avalanche peters out.  

                                                      
35 http://www.er.ethz.ch/essays/origins 
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Figure 6: Cumulative probability distribution of epidemic fatalities. The distribution fits a power-law reasonably well in the mid-region. For major 
pandemics the distribution exhibits a break towards a different dynamics, possibly a sign of the “dragon-king” phenomenon.  

 

 

Another property of certain critical systems is the 

existence of “dragon-kings” (a term coined by Sornette): 

rare extreme events that are much larger than expected 

even based on a power-law or extreme value 

distribution36. They typically reveal a different form of 

underlying dynamics than the run-of-the-mill events, for 

example a phase transition or the introduction of a 

previously non-existent dynamics. For example, acoustic 

events in a strained metal bar have a power-law 

distribution, together with a dragon-king outlier for the 

final rupture. Similarly extreme financial losses may 

increase correlations in ways that make further losses 

much more likely than expected from the standard 

dynamics. Since their occurrence is due to a different 

kind of dynamic than normal events they may be 

surprising “black swans” when they first occur. 

 

This critical systems approach to systemic risk is to a 

large degree descriptive rather than prescriptive, 

although it might be useful for predicting some 

behaviours.  

                                                      
36 (Sornette 2009) 

Homer-Dixon’s hybrid model 
An interesting complement to this statistical view is the 

systems view expressed by Thomas Homer-Dixon37 in 

regards to large societal risks. He argued that there are 

three main risk channels: cascades, multiplicative effects 

and increased correlations in strained systems. In his 

model different domains (energy, food, policing, finance, 

etc.) normally functions fairly independently. They are 

subject to systemic risks on their own, that can lead to 

cascades causing problems. However, the actual damage 

of a crisis depends on how well other domains function: if 

healthcare functions well, the impact of a terrorist attack 

is somewhat reduced; a good economy can manage a 

food shortage by increased imports. Conversely, if other 

domains fail at the same time the damage increases. 

There is a multiplicative effect of simultaneous failures.  

 

If failures are uncorrelated this is not a major issue, but 

he argued that in many recent crises correlations have 

increased before they struck. 

                                                      
37 (Homer-Dixon 2011) 
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 The reason is that domains that are under strain due to 

exogenous factors or ongoing micro-crises require 

resources or support from other domains, increasing the 

correlation between them. In an energy- or climate-

constrained world biofuels become more important, 

strengthening the correlation between fluctuations in 

food and energy prices (especially since energy is a major 

factor in food production costs). This means that a major 

failure in one domain can now trigger failure in the other 

(in this example an energy crisis causing a food 

production crisis) and this leads to a lateral cascade to 

further domains (food scarcity causing political unrest 

and economic trouble) – while the damage is 

multiplicative. 

 

This form of hybrid systemic risk model shows the 

importance of examining not just in-system risk channels, 

but also weak connections to other systems that may 

become stronger – especially if their strength can change 

surprisingly fast.  

 

Conclusions 
In describing the diverse views of systemic risk among 

participants at a conference cosponsored by the Federal 

Reserve Bank of New York and the National Academy of 

Sciences, the authors of the conference report38 noted 

that: 

 

“An adage among traders is that, in times of 

crisis, everything is correlated. Though 

conference participants did not share a 

consensus on the definition of systemic risk, the 

descriptions of systemic events by risk managers 

at the conference reflected this view” 

“Under such regime shifts, the normal 

assumptions culled from historical experience 

that guide fay-to-day trading break down.” 

“In the tentative vocabulary of systemic risk 

suggested above, the self-reinforcing uncertainty 

and market panic that can characterize a 

systemic episode are a clear example of 

contagion. The jump in correlations appearing at 

the onset of a systemic event can in turn be seen 

as an example of self-reinforcing feedback and 

synchrony. Furthermore, the transition from a 

normally functioning market to one in which 

prices are generated by the internal market 

microstructure is accompanied by widespread 

and simultaneous liquidations. Financing 

constraints and the loss of liquidity make a 

return to the pre-crisis state very difficult - an 

asymmetrical transition and example of 

hysteresis.” 

 

This neatly fits in the various components of the systems 

view of systemic risk: as a transition is approached, 

critical slowing or increased linkage occurs, increasing 

correlations. As the dynamics changes, old experience 

becomes inapplicable. Failures begin to spread in the 

institutional network, both along direct links and due to 

information cascades. The end result is a transition to 

another, possibly worse state.  

 

 

                                                      
38 (Board on Mathematical Sciences and Their Applications, 
Division on Engineering and Physical Sciences, National 
Research Council  2007) 
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From the perspective of finance the relevant aspect is 

that an unpredictable external disturbance or single 

failure initiates a snowballing cascade of disruption 

affecting all actors within the market. The end result is a 

situation where often outside intervention is needed to 

stop the process or prevent the new state from harming 

other markets or institutions.  

 

 The term “systemic risk” is used in several 

meanings, sometimes with fairly deep differences. 

 There is however a common core idea that parts 

that individually may function well when 

connected to a system become vulnerable to a 

joint risk that can spread from part to part, 

potentially affecting the entire system and possibly 

related outside systems. 

 The originating causes of the eventual disaster 

may be exogenous or endogenous. 

 Systematic risks are separate from systemic risks, 

but can trigger them. 

 System risks come from the structure of the 

system, but are risks that merely cause emergent 

adverse outcomes, not the contagion effects seen 

in systemic risks proper.  

 Connections between the parts of systems 

vulnerable to systemic risk are often strong, but 

the connection does not have to be obvious – in 

many cases shared correlations and exposures 

suffice to make risks systemic. 

 The key problem is that much of the risk comes 

from the structure of the system, and this is often 

constrained historically, legally, economically or 

practically: changing the structure strongly is often 

not feasible.  

 Adaptation and risk mitigation (including 

regulation) are not separate from the system, and 

can increase systemic risks. 

When discussing systemic risks the specific meaning of 

the term used should be stressed, to reduce risk of 

misunderstanding. 
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Appendix: a sampling of definitions of systemic risk 
 

These definitions represent a small set of definitions used 

in the literature. They can roughly be grouped into (1) a 

set based on risks affecting the entire market/system and 

often having spillover effects outside the system (this is 

the pragmatic G10 report view, mainly focused on finance 

and how to regulate it), (2) definitions stressing contagion, 

(3) definitions stressing the systemic aspect of the risk, (4) 

definitions stressing that the risks occur in important 

system. Whether systematic risk is included or separated 

varies.  

 

 

 
Definition O

utside effects 

A
ffects w

hole m
arket/system

 

C
ontagion 

C
orrelations 

S
ystem

 failure 

S
ystem

atic risk 

S
uddenness 

S
ize 

Endogenousness 

A
ffects im

portant system
s 

U
ncertain/uncontrollable 

O
ther 

Source 

"Systemic risk" refers to the likelihood and degree of 
negative consequences to the larger body. 
 
With respect to federal financial regulation, the systemic risk 
of a financial institution is the likelihood and the degree that 
the institution's activities will negatively affect the larger 
economy such that unusual and extreme federal intervention 
would be required to ameliorate the effects.” 

X X           
 
 

(Property Casualty Insurers 
Association of America 2009) 

“We define systemic risk to be the risk of a failure in a 
transaction or series of transactions extending beyond the 
parties directly involved, impacting many or most 
participants in the marketplace. And the public gains 
awareness of these systemic effects on the larger group only 
after the breakdown has occurred. “ 

X 
 

X           
 

American Academy of Actuaries, 
Concepts for Successful 
Regulation of Systemic Risk  
 

“Systemic risks are developments that threaten the stability 
of the financial system as a whole and consequently the 
broader economy, not just that of one or two institutions. “ 

X X 
 

          b. Bernanke, in his letter to U.S. 
Senator Bob Corker, 30 october 
2009, as reported in The Wall 
Street Journal 

“The risk of disruption to financial services that is (i) caused 
by an impairment of all or parts of the financial system 
and (ii) has the potential to have serious negative 
consequences for the real economy”  

X X 
 

          Financial Stability Board. 2011. 
Policy measures to address 
systemically important financial 
institutions. 

“This report adopts the Group of Ten’s 2001  
definition of systemic risk: “Systemic financial risk is the risk 
that an event will trigger a loss of economic value or 
confidence in, and attendant increases in uncertainty about, 
a substantial portion of the financial system that is serious 
enough to quite probably have significant adverse effects on 
the real economy.”” 

X X 
 

          (Group of Thirty 2006)  
 

“Systemic financial risk is the risk that an event will trigger a 
loss of economic value or confidence in, and attendant 
increases in uncertainly about, a substantial portion of the 
financial system that is serious enough to quite probably 
have significant adverse effects on the real economy.” 

X X 
 

          (Group of ten, 2001) 

“Systemic risk can be defined as the risk  
that an event will trigger a loss of economic  
value or confidence in a substantial segment of the financial 
system that is serious enough to have significant adverse 
effects on the real economy with a high probability.” 
 

X X 
 

          (Cummins & Weiss 2013 
  

“Systemic risk refers to the possibility that a triggering event, 
such as the failure of an individual firm, will seriously impair 
other firms or markets and harm the broader economy.  “ 
 

X 
 

X 
 

      X    (Bullard, Neely & Wheelock 2009)  
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“Returning to the basic question of defining systemic risk in 
securitized globalized markets, experience suggests that 
systemic risk is created by unexpected events that heighten 
uncertainty sharply and impair market liquidity. Illiquidity 
leads to “price gaps” in individual markets and in the pricing 
of specific assets. The associated stress subsequently 
extends to the funding liquidity of financial institutions across 
the globe that are supporting those individual markets. 
Market illiquidity in turn can lead to potentially significant 
real economic effects, thus justifying policy action, especially 
by central banks.” 
 

X X 
 

    X 
 

   X 
 

 (Lipsky 2009) 
 

“There are various definitions of what constitutes “systemic 
risk”, but virtually all of them have the following common 
features: the first is a notion of contagion — risk spreading 
from one firm or sector to another — and the second is that, 
regardless of its point of origin, a systemic risk should be 
capable of having a negative impact on the wider economy.” 

X  X 
 

         (Adams 2009) 
 

“A systemic event is defined as a financial crisis that causes 
a substantial reduction in aggregate economic activity, such 
variables as housing starts, home sales, consumption, output 
and employment. Systemic risk is the possibility that a 
systemic event may occur. “ 

X            http://www.fhfa.gov/webfiles/114
5/sysrisk.pdf  

“The notion of systemic risk is perhaps one of the most 
popular terms used in connection with the discussion of 
crises in the banking system, both by regulators and in the 
academic literature. It is used as a description of many 
different phenomena as has been pointed out by Dow (2000) 
and by DeBandt and Hartmann (2000). It is used to describe 
crises related to the payment system, to bank runs and 
banking panics, to spillover effects between financial markets 
up to a very broadly understood notion of financially-driven 
macroeconomic crises. Despite the lack of a precise 
definition, when the term, “systemic risk”, is used in 
connection with the banking system, it seems that most 
authors have in mind the problem of simultaneous failures of 
many institutions with significant consequences for the real 
economy.” 

X      X 
 

     (Summer 2009) 
 

“Systemic risk appears when generalized malfunctioning in 
the financial system threatens economic growth and welfare. 
“ 
 
“The causes of this malfunction are multiple and therefore a 
single measure of systemic risk may neither be appropriate 
nor desirable. “ 

X            (Rodríguez-Moreno & Peña 2013)  
 

“The risk that the inability of one institution to meet its 
obligations when due will cause other intuitions to be unable 
to meet their obligations when due. Such a failure may cause 
significant liquidity or credit problems and, as a result, could 
threaten the stability of or confidence in markets.” 

 X 
 

X          (European Central bank 2004) 

"Systemic risk refers to the risk or probability of breakdowns 
in an entire system, as opposed to breakdowns in individual 
parts or components, and is evidenced by comovements 
(correlation) among most or all the parts." 

 X X X         
 

(Kaufman & Scott 2003) 
 

“the risk or probability of breakdowns (losses) in an entire 
system as opposed to breakdowns in individual parts or 
components and is evidenced by comovements (correlation) 
among most or all the parts.” 

 X 
 

X X 
 

        (Kaufman 2000) 

"the risk that the failure of one financial institution (as a 
bank) could cause other interconnected institutions to fail 
and harm the economy as a whole " 
 
 
 
 
 
 

 X X 
 

         Merriam-Webster Dictionary 
http://www.merriam-
webster.com/dictionary/systemic
%20risk 
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“Systemic risk to financial markets is often defined as the 
risk of a major and rapid disruption in one or more of the 
core functions of the financial system caused by the initial 
failure of one or more financial firms or a segment of the 
financial system ([3], p. 3.) “ 

 X X 
 

   X 
 

 X 
 

   Modeling systemic risks in 
financial markets 
 
http://arxiv.org/abs/1311.3764v1 

“We define a systemic event in the narrow sense as an event, 
where the release of "bad news" about a financial institution, 
or even its failure, or the crash of a financial market leads in 
a sequential fashion to considerable adverse effects on one 
or several other financial institutions or markets, e.g. their 
failure or crash. ... Essential is the "domino effect" from one 
institution to the other or from one market to the other 
emanating from a limited ("idiosyncratic") shock. Systemic 
events in the broad sense ... include not only the events 
described above but also simultaneous adverse effects on a 
large number of institutions or markets as a consequence of 
severe and widespread ("systematic") shocks. “ 
 
“Based on this terminology a systemic crisis (in the narrow 
and broad sense) can be defined as a systemic event that 
affects a considerable number of financial institutions or 
markets in a strong sense, thereby severely impairing the 
general well-functioning (of an important part) of the financial 
system.” 
 
“Systemic risk (in the narrow and broad sense) can then be 
de fined as the risk of experiencing systemic events in the 
strong sense.” 

 X 
 

X 
 

  X 
 

X 
 

 X 
 

   (de Bandt & Hartmann 2000)  
 

“We can reach a working definition of systemic risk: the risk 
that (i) an economic shock such as market or institutional 
failure triggers (through a panic or otherwise) either (X) the 
failure of a chain of markets or institutions or (Y) a chain of 
significant losses to financial institutions, (ii) resulting in 
increases in the cost of capital or decreases in its availability, 
often evidenced by substantial financial-market price 
volatility” 
 

 X X 
 

         (Schwarcz  2008)  

“There are two main strands of model development, which 
resonate with different policy objectives and corresponding 
risk indicators of systemic risk: (i) a particular activity causes 
a firm to fail, whose importance to the system imposes 
marginal distress on other firms (or markets) (“contribution 
approach”),14 or (ii) a firm experiences losses from a single 
(or multiple) large shock(s) due a significant exposure to the 
commonly affected sector, country and/or currency 
(“concentration of activity”) and either amplifies systemic risk 
due to own distress (“participation-contribution approach”) or 
demonstrates sufficient resilience to absorb common shocks 
(“participation approach”).” 

 X 
 

   X       (Jobst 2012)  

"1. General: Probability of loss or failure common to all 
members of a class or group or to an entire system. 
Erroneously also called systematic risk. 
2. Investing and trading: Probability of loss common to all 
businesses and investment opportunities, and inherent in all 
dealings in a market. Also called market risk, it cannot be 
circumvented or eliminated by portfolio diversification but 
may be reduced by hedging. In stock markets, systemic risk 
is measured by beta-coefficient." 

 X 
 

   X       Business Dictionary 
http://www.businessdictionary.co
m/definition/systemic-risk.html 

“Although there is no one way to define systemic risk, all 
definitions attempt to capture risks to the stability of the 
financial system as a whole, as opposed to the risk facing 
individual financial institutions or market participants.” 

 X           FSCO annual report 
 
http://www.scribd.com/doc/6187
7765/2011-FSOC-Annual-Report 

“Systemic risk “is often viewed as a phenomenon that is 
there “when we see it,” reflecting a sense of a broad-based 
breakdown in the functioning of the financial system, which 
is normally realized, ex-post, by a large number of failures of 
financial institutions (usually banks).”  

 X 
 

     X     International Monetary Fund 
2009) 
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“Like Justice Potter Stewart's description of pornography, 
systemic risk seems to be hard to define but we think we 
know it when we see it. “ 
“A more formal definition is any set of circumstances that 
threatens the stability of or public confidence in the financial 
system.” 

 X           (Billio et al. 2012) 
 

"In finance, systemic risk is the risk of collapse of an entire 
financial system or entire market, as opposed to risk 
associated with any one individual entity, group or 
component of a system." 

 X           Wikipedia 
https://en.wikipedia.org/wiki/Syst
emic_risk 

“Establishing what constitutes systemic importance has 
proved difficult, and most G+20 members do not have a 
formal definition.” 
“in practice G+20 members consider an institution, market 
or instrument as systemic if its failure or malfunction causes 
widespread distress, either as a direct impact or as a trigger 
for broader contagion.” 

  X 
 

    X 
 

    (FSB, IMF, BIS 2009)  

“While systemic risk has been seen as a threat caused by 
unpredictable, highly improbable, exogenous stochastic 
events (Albeverio et al., 2006; Taleb, 2007), we see systemic 
risk as reflecting endogenous structural weakness” 
“While these networks involve the transmission of materials, 
capital, information and knowledge, recent decades of 
intense global integration mean that these highly 
interconnected networks also have the potential to originate 
and propagate risk. This central property of 
interconnectedness in networks (Jervis, 1997) can be 
paradoxical in both its structure and impacts. Increasingly 
connected networks facilitated by globalization can lead to 
both greater robustness and more fragility” 

  X      X   Structur
al 
weaknes
s 
 

(Goldin & Vogel 2010) 

“An adage among traders is that, in times of crisis, 
everything is correlated. Though conference participants did 
not share a consensus on the definition of systemic risk, the 
descriptions of systemic events by risk managers at the 
conference reflected this view”.  

   X         (Board on Mathematical Sciences 
and Their Applications, Division 
on Engineering and Physical 
Sciences, National Research 
Council 2007) 

Use the FSB and IMF definition, endorsed G20             Geneva_Association_Systemic_Ri
sk_in_Insurance_Report_March2
010 

"A systemic risk is the risk of a phase transition from one 
equilibrium to another, much less optimal equilibrium, 
characterized by multiple self-reinforcing feedback 
mechanisms making it difficult to reverse." 

           Phase 
transitio
n 
Self-
reinforci
ng 
feedbac
ks 

(Hendricks 2009) 

“Systemic risk occurs when individual actors unknowingly 
create risk through their systemic interactions with each 
other (which they are often unable to model). 
 

    X        http://ineteconomics.org/sites/ine
t.civicactions.net/files/INETSessio
n2-Lunch-Farmer_0.pdf 

“In this study we will mainly address the insurance issues 
related to the emergence of systemic risks, as defined in the 
OECD study on emerging systemic risks. In this study, these 
are defined as risks that occur as a result of current or future 
functioning of major systems. These major systems lead to 
complex interactions, which therefore lead to increasing 
risks. “ 

         X   (Faure & Hartlief 2003) 

“The potential for large-scale disasters or catastrophes 
characterized by both extreme uncertainty and a potential for 
extensive and perhaps irreversible harm.” 

       X 
 

  X 
 

 (Cavelty) 

"A systemic risk, in the terminology of this report, is one that 
affects the systems on which society depends – health, 
transport, environment, telecommunications, etc." 

         X   (OECD 2003) 
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"This term denotes the fact that risk to human health and the 
environment is embedded in a larger context of social, 
financial and economic risks and opportunities. " 
 "A holistic and systemic concept of risk must expand the 
scope of risk assessment beyond its two classic components: 
extent of damage and probability of occurrence." 

           Risk 
inside 
various 
systems 

(Renn & Klinke 2004) 

“Risks that can trigger unexpected large-scale changes of a 
system or imply uncontrollable large-scale threats to it” 
 

      X 
 

X 
 

  X  (Helbing 2009) 

 “Rigorously speaking, systemic risk refers to systemic 
failure, i.e. to the failure common to an entire system, is it 
the financial system or the market or the whole economic 
system including the government.” 

    X        (Trainar 2010) 
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White Paper Context 
Automation and models have been introduced in many industries, with human 

performance supplemented or replaced by computers and algorithms. In many 

cases, performance does not improve as much as was expected, and in a few 

cases it actually worsens. One reason for this is that often the humans involved do 

not perform at the same level of competence as they did before automation was 

introduced. The consequences of this can be drastic, involving plane and car 

crashes, medical errors, and even financial crashes. 

 

This phenomenon can be analysed from a general, cross-industry perspective. The 

same features reoccur in a variety of different domains, with the same human and 

computer errors repeated from insurance to aviation. Since one of the most 

evocative and well-studied examples of this issue involves errors from airline pilots’ 

over-reliance on autopilot systems, we call this “the autopilot problem”.  

 

In this paper the four root causes of the problem are explained and potential ways 

to reduce or mitigate their effects are suggested. 

 

Industry Relevance 
In (re)insurance, modelling is becoming more and more important, with 

catastrophe models immediately springing to mind as an important part of 

(re)insurer risk assessment. But it does not stop there, with capital models, for 

example, being used as the basis for important strategic decisions. 

People in our industry often believe that the more we can model, the better our 

assessment of a risk must be. And despite the claim to be “not focused only on 

model output”, more often than not, decisions are taken based on model results. 

Applying the autopilot problem to (re)insurance raises a number of questions such 

as; 

• Can underwriters still get a handle on the catastrophe exposure in a larger 

portfolio, without simply following the model results? 

• Increased usage of models can lead to a degradation of skills amongst the 

user. Are we aware of where and in which functions within the 

organisation the impact of skills degradation will have the most effect? 

• Are decision makers aware of the shortcomings of the models involved in 

the decision making process? 

A potential outcome could be the need to retrain underwriters or change their role, 

at least in parts of the underwriting process.  
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Next Steps 
This white paper sets the scene for further research, in 

particular: 

 Testing to what extent the autopilot problem 
actually applies to underwriting (and potentially 
capital management) by assessing whether the 
four root causes of the problem are valid in our 
context; 

 Elaborating which mitigation strategies can 
work in (re)insurance and to what extent the 
problem has to be accepted. 
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Introduction 
On the 1st of June 2009, at 02:10:05 UTC, the autopilot of Air France Flight 447 

disengaged suddenly while the plane was on the way from Rio to Paris. The 

pilots, who’d been overseeing the flight in a very general way, were suddenly 

dropped into the middle of an emergency. This was triggered by a technical 

failure, but the pilots couldn’t know this, as they had not been actively flying the 

plane to that point. They were trying desperately to simultaneously figure out 

what was going wrong and correct it without the necessary comparison data. But 

the pilots never were to know what the problem was, before the plane hit the 

waters of the Atlantic, killing everyone on board. 

 

At 1:45AM on September 15, 2008, Lehman brothers filed for bankruptcy. Over 

the next few weeks, traders and investors tried to cope with the ongoing 

contagion of collapse and bad debt. Their usual tools for measuring risk – such 

as the financial models derived from the Black-Scholes equations (Black & 

Scholes, 1973), and the credit rating agencies – turned out to be flawed. The 

collapse in confidence, credit and liquidity was far greater than the models had 

ever imagined, while the credit agencies gave AAA ratings to investments that 

turned out to be worthless1. Bankers and investors had to come up with some 

other way of assessing the true risk of investments and corporations, least credit 

dry up entirely and the crisis become self-sustaining. They failed, and the world 

was set for many years of recession. 

 

Both of these are illustrations of a similar underlying problem, the “autopilot 

problem”2. This emerges when any position which requires human skills (pilot, or 

financial risk assessor) is replaced with an automated system, with the human 

role transformed into that of an overseer. For pilots, the automated system was 

the actual autopilot; for financial risk assessors and traders, it was the models of 

financial mathematics. The actual problem is that the human overseer will not be 

as capable as the original human ‘pilot’ was, either as an overseer or as 

replacement for the automation in cases where it no longer functions. Systems 

built without this realisation will lead to errors and underperform expectations. 

 

This need not result in huge disasters – though, for example, loss of life due to 
drivers blindly following GPS to their deaths has been reported3  – but the 
problem is surprisingly common4. Variants of the autopilot problem are apparent 
in piloting, air-traffic control, vehicle driving, navigation (on land and on sea), 
cancer detection and other medical diagnostics, industrial processes, military 
strike decisions, political predictions, financial trading, insurance and even 
building security5.  

                                                      
1 Famously, this was the case with the “synthetic” Collateralized Debt Obligation (CDO), with continual (and 
successful) commercial pressure being brought on the rating agencies to rate them safer than their true risk 
http://www.bloomberg.com/apps/news?pid=newsarchive&sid=ax3vfya_Vtdo .  
2 Similar problems exist in many fields where automation replaces or extends human capabilities, and are often 
called different names. The term “automation bias” is a common one, though it is often used to refer to a 
specific subproblem of the autopilot problem (Parasuraman & Manzey, 2010). 
3 See for instance http://www.npr.org/2011/07/26/137646147/the-gps-a-fatally-misleading-travel-companion . 
4 Indeed it is starting to enter the press’s consciousness, e.g. 
http://www.economist.com/blogs/babbage/2013/08/cockpit-automation . 
5 See Bruce Shneier’s example https://www.schneier.com/blog/archives/2013/09/humanmachine_tr.html . 
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On a more personal level, people are experiencing 
versions of the autopilot problem as their smart phones 
take over organising their information and their daily 
tasks, and future increases in automation or models – 
such as prediction markets6 – will cause new versions of 
the problem in the years to come.  
 
This paper will analyse the autopilot problem by first 
decomposing it into four separate contributory factors: 
loss of situational awareness, skills degradation, human 
error causing misplaced trust and complacency, and 
unreliable modal estimates from the automation. Each of 
these factors will be analysed with reference to the 
literature and specific examples. 
 
It will then draw on the extensive literature existing across 
the different fields that have experienced the autopilot 
problem, and the successful and unsuccessful attempts 
that have been made to solve it. The problems can be 
mitigated to some extent by retraining the human 
overseer or reprogramming the automation to better 
interface with them. But there seems to be limits to what 
can be achieved in this way. More radical solutions involve 
dramatically changing the role of the overseer, thus 
transforming the joint system into something radically 
different (and hopefully better) than the pre-automation 
system. Finally, if the problem is too egregious and 
intractable, there may be no alternative but accepting the 
problem without being able to solve it – or reducing 
automation and returning to the older way of doing things. 
 

                                                      
6 These are speculative markets created for the purpose of making predictions. 
The current market prices can then be interpreted as predictions of the 
probability of the event or the expected value of the parameter (Arrow, et al., 
2008). If decision makers come to rely on them instead of making their own 
decisions, the autopilot problem can result. 

Defining the autopilot problem 
Why does the ‘autopilot overseer’ not perform as well as 
the ‘pilot’ did before? To both define the problem and 
generalise it, we need to isolate the significant features of 
the autopilot problem, stretching from pilots in airplanes 
to modellers in finance7. At its core, the autopilot problem 
has four main features that contribute to degraded 
performance: 
 

1. Loss of situational awareness. 
2. Skills degradation. 
3. Human error: misplaced trust and complacency. 
4. Unreliable modal estimates. 

 
The first three problems are well known in the research 
(Cummings, 2004) and have been apparent, in one form 
or another, since the early days of automation 
(Bainbridge, 1983), while the fourth is under-analysed to 
date. 
 

Loss of situational awareness 
Situational awareness is defined as “the perception of 
elements in the environment within a volume of time and 
space, the comprehension of their meaning, and the 
projection of their status in the near future” (Endsley, 
1995). It is essentially the continual perception of the 
values of important variables, changes in their values, and 
the meaning of these changes. These variables might be 
height and angle of the plane, or the volatility or risk 
appetite of the market. Automation tends to reduce 
situational awareness, by distancing the ‘pilot’ from these 
variables and making them less-decision relevant. 
 
The crash of Air France 4478 perfectly illustrates the loss 
of situational awareness. As they had not been manually 
flying the plane, the pilots had neither immediate 
historical knowledge of the key flight parameters such as 
airspeed, nor did they have the human intuitive sense of 
the changes in the machine's performance derived from 
physical control and contact. Thus they were unable to 
notice the discrepancy between the instrument 
information and actual performance. Not only did they not 
realise their instruments had failed, but they also did not 
have enough intuitive data to recognise the most basic 
flying emergency – a stall. 
 
 

                                                      
7 From now on we will use the term ‘pilot’, in quotation marks, to refer to 
anyone potentially suffering from the autopilot problem, not just to actual airline 
pilots. The term ‘autopilot’ will be used similarly. 
8 The flight was from Rio de Janeiro to Paris, crashing on the 1st of June 2009. 
See http://en.wikipedia.org/wiki/Air_France_Flight_447 . 
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On a lesser scale, adaptive cruise control causes loss of 
situational awareness in driving, delaying driver reactions 
in critical situations such as narrow curves and fog banks 
(Vollratha, Schleicherb, & Gelau, 2011). Drivers using ACC 
were consistently 5 seconds slower to react. 
 
A similar situation developed in the financial markets with 
collateralized debt obligations (CDO) based on sub-prime 
mortgages, or on other CDOs. Models and rating agencies 
(using models) gave their estimation of the risks involved. 
The headline numbers allowed traders to value and sell 
these instruments, while distancing them from the real 
underlying assets. The loss of situational awareness was 
so complete that when the subprime crisis hit, banks and 
investment organisations were unaware of the extent of 
their exposure to these complex financial instrument: they 
didn’t understand what risks they carried on their books, 
as the actual risk was buried under many levels of 
financial transformations. This contributed to a severe 
liquidity crisis9. 
 
Industry relevant points: 

 There are different kinds of situational awareness, and 
the autopilot problem does not apply to all. 

 Insurers probably have great situational awareness 
about market conditions, about the reliability of 
brokers, or about the strengths, weaknesses and 
strategies of other insurers. 

 Insurers try to develop situational awareness about the 
physical conditions of the things they insure, for 
instance by improving reporting, getting more details, 
plotting their locations, and so on. 

 Insurers probably lack good situational awareness 
about the underlying physical processes behind 
disasters, and the relevant conditions on the ground. 

 Insurers probably only have moderate situational 
awareness of the model-maker’s biases and errors, as 
they probably have only partial knowledge of the 
details of the modelling companies internal decisions. 

 Good situational awareness would allow insurers to 
detect when changing conditions could make the Cat 
models unreliable (e.g. changes in solar radiation or 
shifts in oceanic currents). 

 

                                                      
9 Starting on the 9th of August 2007, when many banks stopped lending to each 
other, as they could not assess each other’s exposure and risk 
http://www.theguardian.com/business/economics-blog/2012/aug/05/economic-
crisis-myths-sustain . 

Skill degradation 
In order to maintain expertise, experts must be put into 
situations where they receive frequent feedback about 
their actions (Kahneman & Klein, 2009) (Shanteau, 1992). 
Lacking this feedback, their expertise and skills degrade, 
and they are no longer capable of performing as well. The 
older generation of ‘pilots’ can sometimes “ride on their 
skills” (perform at a reduced, but still acceptable, level by 
using the skills and techniques acquired before the 
introduction of the ‘autopilot’ (Bainbridge, 1983)), while 
subsequent generations cannot develop these skills in the 
first place. 
 
This is the case in aviation, where the typical pilot spends 
more time managing the flight or the autopilot, but much 
less time actually flying the plane than they used to10. 
Adaptive cruise control has a similar effect: drivers are 
spending a smaller proportion of their trip actually in 
direct control of their vehicle. 
 
Similarly, traders used to have to try to gain an 
understanding of the securities they invested in, to 
estimate the risk properly, and establish a price that 
reflected their understanding and intuitions without relying 
on sophisticated financial models – the models didn’t 
exist, nor did the computers with power to run them. But 
the rise of mathematical models changed the profession 
entirely: mathematicians and physicists11 flooded in, 
equipped with model-manipulation skills, not with deeper 
understanding of the markets12. For instance traders spent 
a lot of their time controlling the ‘Greeks’ on their option 
portfolios (Haug, 2007). These Greeks were numbers, 
derived from the Black-Scholes model, that purported to 
measure the sensitivity of the value of the portfolio to 
small changes in underlying parameters. A few investors 
(such as Warren Buffet, famously) maintained a deeper 
analysis of company performance13, but in general these 
skills were less sought-after and were less used, leading to 
a degradation of expertise. 
 

                                                      
10 See the description of a typical flight in 
http://flyingforeveryone.blogspot.co.uk/2012/01/autopilot-myth-what-your-pilot-
really.html . 
11 Called ‘quants’ (quantitative analysts) in trading. 
12 See for instance this quote from Emanuel Derman in 2003: “There are always 
implicit assumptions behind a model and its solution method. But human beings 
have limited foresight and great imagination, so that, inevitably, a model will be 
used in ways its creator never intended. This is especially true in trading 
environments, where not enough time can be spent on making interfaces fail-
safe…” (Derman, 2003) 
13 Investing in this way is known as “value trading”. 
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Industry relevant points: 

 Maintaining a longer institutional memory can help 
against some types of skill degradation. 

 But this institutional memory can only go so far: there 
is a limit to what can be imparted by teaching or by 
experience, if the skills are no longer currently used. 

 Those most closely connected with the data may be 
able to preserve their skills if given the right tasks. 

 Those at the top of the organisations have a different 
set of skills (networking, management, planning) that 
would be less likely to be affected by degradation. 

 Thus an insurer’s skill degradation is likely most acute 
at the mid-level, where people deal mostly with models 
and information that has been summarised or collated. 

 These mid-level people may develop other skills, or 
may be trained to develop other skills – see the 
solution section. 

 

Human error: misplaced trust and complacency. 
Human reasoning has well established flaws and 
weaknesses, and the worst designed ‘autopilots’ 
exacerbate rather than mitigate these effects. Humans are 
often cognitive misers, using as little information as they 
can and placing heavy reliance on cognitive shortcuts 
(Fiske & Taylor, 1991). Kahneman distinguished between 
the slow “system two” reasoning and an automatic and 
quick “system one”, operating with little effort and outside 
of voluntary control (Kahneman, 2011): human brains 
have a preference for using system one whenever 
possible. 
 
By taking over part of the decision process, the ‘autopilot’ 
facilitates the overuse of system one. Computerised 
warning systems can replace long and thorough (and 
tiring) processes of manual risk-checking. If the ‘autopilot’ 
is highly accurate, and makes few mistakes (or even 
makes no mistakes, in the career of the human overseeing 
it), this will inevitably breed complacency and bias in the 
‘pilot’ (Parasuraman & Manzey, 2010). This can be 
understood mainly as attention allocation errors: if the 
humans had all the time they needed, and thoroughly 
followed all the procedures they were supposed to follow, 
including checking for errors carefully, then they would be 
less prone to falling victim to complacency or excess trust 
in automation. 
 
But that is not a realistic scenario in humans, and 
cognitive pressure or task load make it worse (Biros, Daly, 
& Gunsch, 2004). Humans fall victim to automation 
complacency in many variants of the autopilot problem, 
including in the medical profession, where erroneous 
advice was more likely to be followed when given by a an 

automated clinical decision support system (CDSS) than 
by a non-CDSS control (Goddard, Roudsari, & Wyatt, 
2012). The automated advice was trusted more, without 
good reason for this trust, while non-automated advice 
was more likely to be questioned. 
 
To a large extent, misplaced trust flows from the 
‘autopilot’s’ seeming success: the ‘pilot’ has a lot of 
experience of the ‘autopilot’s’ successes, and little of its 
errors. Traders who used the Black-Scholes models (Black 
& Scholes, 1973) of finance had long experience of 
successful pricing, punctuated only by rare ‘crises’14, 
which were easy to dismiss. 
 
This example could do with some further analysis, 
because the errors made are very illuminating. To vastly 
oversimplify, the Black-Scholes model rests on two 
foundational assumptions: that arbitrage opportunities are 
impossible15 and that the volatility of stocks are log-
normally distributed. The first assumption is often 
justified, the second far less so – indeed Benoit 
Mandelbrot criticised it as far back as 1963, advocating 

using instead a “Levy-Stable distribution with an α of 
1.7”16 (Mandelbrot, 1963). This seems to have been 
ignored, possibly because the difference would have only 
been visible in large rare events17. Traders tend to ignore 
such tail risks, possibly because they experienced them so 
rarely, or possibly because of a “narrative fallacy” which 
causes traders to seek and believe narrative explanations 
for large swings (Taleb, 2007). With such an explanation in 
hand, the large swings could plausibly be discounted as 
exceptions, and the standard model preserved. 
 
But there were more egregious errors than this. The 
standard Black-Scholes model predicted that the “implied 
volatility” of an option would be constant as a function of 
its strike price; experience showed that this was false, and 
that it followed instead a “volatility smile” (Hull, 2010). At 
that point, traders should have accepted that the 
underpinning of their model was wrong, and that they 
could only use it in empirical fashion, checking it against 
the actual behaviour of the market. In particular, the 
model could not be used to predict rare extreme events, 
as it was not calibrated on these.  

                                                      
14 Such as the 1987 “Black Monday” collapse where 22% of the Dow Jones 
Industrial Average’s value was lost, and the 1998 Russian financial crisis, which 
sunk the Long-Term Capital Management (on the board of which was Myron 
Scholes, co-author of Black–Scholes model). 
15 Because traders will instantly take advantage of any pricing situations that 
allow for risk-free income, thus removing the opportunity of others to further 
profit from that arbitrage opportunity. 
16 Rather than an � of 2 for the normal distribution. 
17 This is often referred to as “tail risk”, since these events happen out in the tails 
of the probability distribution of likely events. 
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Instead, what seems to have happened is that the volatility 
smiles were added arbitrarily to the Black-Scholes model, 
and may have paradoxically increased confidence in the 
combined model18. There is a common human tendency 
(the “affect heuristic” (Finucane, Alhakami, Slovic, & 
Johnson, 2000)) to judge the quality of something based 
on general feelings of goodness or badness rather than a 
decomposition of advantages and disadvantages. It is 
plausible that having used their model to price options 
successfully day after day (and having plausible narrative 
reasons for any failure), traders came to believe that it 
was of high quality even outside of this domain of validity, 
and could even account for large-scale tail risks (a position 
for which there was no evidence). 
 
Industry relevant points: 

 These kinds of errors are most likely to be problems 
under time pressure or stress. 

 Business culture and attitude can help against alleviate 
these problems to some extent, as can good business 
procedures and workloads. 

 But some problems will remain, even in the best of 
cases: some of these flaws are intrinsic to the human 
condition, and cannot be removed (see the section on 
retraining the pilot for examples of biases that cannot 
be overcome through training). 

 The problem is especially acute when a successful 
model is used beyond its domain of validity (a 
historical example being the use of early Californian 
quake ‘models’ in areas such as Australia, without 
reassessing for the local hazard). In these cases, the 
model users may have a very erroneous impression of 
the model’s validity. 

 

Unreliable modal estimates 
Often the most likely estimate the model gives – the 
“modal” estimate – is known to be inaccurate, but is still 
used. For instance the Black-Scholes model of finance 
allowed traders to put a price on very exotic and unusual 
derivatives – financial instruments that could not be 
priced before19. The model is, of course, flawed, and the 

                                                      
18 Adapting a model to new empirical data is a praiseworthy task in general. The 
problem here is that the confidence levels were not adjusted to take on board 
the fact the initial model had failed: the uncertainty was underestimated as a 
result. Also, the model may “degrade” over time if extra “patches” are added 
without understanding the fundamental assumptions underlying the model, 
especially if the patch seems to extend the model’s domain of validity. Model 
feedback is essential but needs to be carefully handled. 
19 For instance, consider the so-called ‘barrier’ options, which are standard 
options that are brought into existence, or extinguished, when the underlying 
asset breaches a pre-set barrier level. These cannot be priced by classical 
Black–Scholes, more complex methods building on this can be used. Other 
examples are interest rate and currency swaps, which used to be considered 
exotic derivatives, but became to be considered standard financial instruments 
once models allowed them to be priced – models that were known to be 

price is certainly incorrect, to some degree at least. But 
nevertheless it was a price for that financial instrument 
where none was previously known, allowing it to be 
compared with other instruments and traded in large 
quantities. 
 
This is a common feature of the autopilot problem in 
insurance and finance. The ‘autopilot’ comes up with an 
estimate, which is known to be flawed, but where the true 
value is either impossible or very difficult to evaluate 
correctly. And in many circumstances, this flawed 
estimate starts being taken as accurate and used as a 
basis for decisions, without the necessary scepticism. 
 
There are several reasons for this. People may feel more 
psychologically comfortable trusting a precise numerical 
estimate, even if the precision is spurious (Egger, 
Schneider, & Smith, 1998). There is a tendency to anchor 
on an initial value, by taking it as a starting point and not 
moving far enough from it when further evidence comes 
in (Tversky & Kahneman, 1974). The complacency 
mentioned in the previous section can also play a role, of 
course. 
 
But there are also systemic reasons for sticking close to 
the ‘autopilot’s’ estimate. It can provide ‘cover’ for those 
seeking to justify their decisions to superiors20. Following 
the modal estimate and getting things very wrong is 
unlikely to be punished as severely as deviating from the 
standard wisdom and getting things very wrong. In the 
second case, the ‘pilot’ must be willing to accept a greater 
accountability for their actions than in the first, something 
not all humans are comfortable with, even if it leads to 
improved performance (Skitka, Mosier, & Burdick, 2000). 
 
The ‘pilot’ may not even be aware of the flaws. This 
happens often in models, where different measures of risk 
or uncertainty get combined together. Often, only the 
headline numbers are reported, with the ‘pilots’ not 
cognisant of the assumptions going into them. They are 
therefore left with no choice except to take the numbers 
as given. 
 
In finance, if the model is in common use throughout the 
industry, then it makes sense to stick to the price given21. 
Even if the price is wrong, the traders know that they will 
be able to buy (or sell) their financial instrument at that 

                                                                                          
incoherent (Boenkost & Schmidt, 2005) but these models were still used (at 
least until the 2007 financial crisis)! 
20 See Tetlock’s ‘Social Contingency Model’ (Tetlock, 1992) for a more detailed 
analysis of the factors surrounding accountability is social situations. 
21 Also regulators and quasi-regulators (such as Lloyds of London) can make it 
costlier to deviate from the mainstream, as any deviation has to be explained 
and possibly justified, sometimes at length. 
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price, so the model’s estimate takes on a life of its own as 
the market price.  
 
There is no advantage then to deviating from the model 
price, unless the trader can detect in which direction the 
model is biased, and thus figure out if it is under-pricing 
or over-pricing22. In other words, the flawed model’s 
estimate will be accepted as accurate, unless there is a 
better source of information around23. And though some 
traders can profit from flawed models by taking the long 
view and betting on extreme events24, most traders were 
incentivised for short term returns. 
 
Industry relevant points: 

 This is a general problem, but particularly relevant to 
insurance and trading models. 

 Reporting the uncertainty doesn’t solve the problem: 
the ‘modal estimate’ would then be the mean plus 
uncertainty (or even the whole distribution). It can help 
to report ‘autopilot’ uncertainties on specific problems 
(rather than global uncertainties of the ‘autopilot’), but 
as long as there are reasons to suspect the distribution 
is wrong (but no easy way of correcting it), part of the 
problem will remain. 

 Anchoring happens without people being aware of it, 
and is very hard to combat – all obvious solutions fail. 
Smart, well informed, and well incentivised people still 
anchor, even when aware of the anchoring effect (see 
later section on retraining the pilot for citations). 

 Some of the problems are systemic, and can’t be 
resolved by one insurer in isolation, as insurers will 
have to follow the market to some extent in some 
areas in order to remain solvent. Though it may be 
possible for some to perform better than before, even 
in the presence of unresolved systemic problems. 

 For Cat models, if the underlying dynamics shift – e.g. 
due to a major earthquake that shifts the stresses in 
the surrounding fault zones – then it is likely the shift 
will be detected before a new model comes out. So 
there will be a period when the current model is known 
to be unreliable, but the directions of the errors are 
unknown. 
 

 

                                                      
22 Another drawback to being “outside the market” is that the market has auto-
corrective features that a single model – even a better one – may lack. There is 
a difference between “if everyone used model X instead of model Y, it would be 
better for everyone” and “I should myself change from model X to model Y”. 
23 It is a well-known truism that “all models are wrong, but some are useful” (Box 
& Draper, 1987), but without ability to act on that maxim, mere knowledge of it 
is insufficient. 
24 Nassim Taleb and Mark Spitznagel made a large profit off the 2008 financial 
crisis http://online.wsj.com/news/articles/SB122567265138591705 . 

 Using models beyond their domain of validity (e.g. 
using standard models for estimating liquefaction risks 
in New Zealand) is a very common source of unreliable 
modal estimates. 
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Solving the autopilot problem 
The autopilot problem can be very severe, causing plane 
and economic crashes. Thus, methods to reduce or solve 
the problem would be of great value. Given the analysis of 
the previous section, how can the problem best be 
addressed? 
 
There have been several attempts to reduce the autopilot 
problem in a variety of fields, which can be decomposed 
into five categories: 
 

1. Retrain the pilot. 
2. Change the autopilot. 
3. Change the pilot’s role. 
4. Accept the cost of the autopilot problem. 
5. Reduce or remove the autopilot. 

 
This section will analyse the five approaches in detail, 
illustrating them with practical examples from literature. 
The actual airplane autopilot problem, and the excessive 
dependence on mathematical models (in the financial or 
insurance worlds, for instance) will be taken as two 
canonical examples of the autopilot problem, and 
improvements relevant to these two will be presented. 
Note that there may be unusual systemic effects: though it 
is clear that individual actors could benefit from these 
improvements, their impact may be different on the 
industry as a whole. Considerations of systemic issues will 
be addressed in other papers, as it is beyond the scope of 
the autopilot problem. 
 

Retrain the pilot 
Retraining the ‘pilot’ is the first and most obvious solution. 
Since the ‘pilot’ performed at a higher level without the 
‘autopilot’, it seems reasonable to assume that the 
previous performance25 can be recaptured in some way, 
with the correct training, retaining the old skills, re-
developing situational awareness, and so on. 
 
But some biases cannot be overcome by training26 
(similarly, some are completely independent of cognitive 
ability (Stanovich & West, 2008)). Training cannot 
overcome the anchoring bias, for instance (a key part of 
the “Unreliable modal estimates” problem). Explaining the 
anchoring effect and warning against its consequences 
was insufficient to correct it (Wilson, Houston, Etling, & 

                                                      
25 This assumes the ‘pilot’s’ new role is similar to their old one, or where they 
need to be able to reprise their old role in some situations. See later sections for 
cases where the role is quite different. 
26 Though some are more susceptible to training, such as confirmation bias: “In 
some but not all studies, basic education about specific cognitive biases (e.g., 
brief and nontechnical tutorials on confirmation bias) also decreases 
participants’ tendency to fall prey to certain errors, including confirmation bias.” 
(Lilienfeld, Ammirati, & Landfield, 2009) 

Brekke, 1996). Even when financial rewards were offered 
for correct responses, the anchoring effect persisted 
(Simmons, LeBoeuf, & Nelson, 2010). Parasuraman and 
Manzey found that many putative interventions failed to 
reduce the problems of complacency and excess trust in 
the ‘autopilot’: more training in the task at hand, more 
experience (and many alternative ideas, such adding more 
than one ‘pilot’) failed to improve the situation 
(Parasuraman & Manzey, 2010). Thus, many obvious 
interventions do not achieve the expected results. 
 
Some improvements are possible, however. One option is 
to increase the accountability of the ‘pilot’, making them – 
and not the ‘autopilot’ – responsible for the outcome. In 
this situation, errors of omission (failing to respond to 
system irregularities which the ‘autopilot’ did not flag) and 
of commission (following the advice of the ‘autopilot’ 
despite other information indicating it was in error) were 
both reduced (Skitka, Mosier, & Burdick, 2000). 
Internalised senses of accountability were more effective 
at reducing the bias than externally manipulated 
accountability demands (Mosier, Skitka, Heers, & Burdick, 
1998). These results hold as long as the ‘pilot’ was 
accountable for the outcome: if the ‘pilot’ was 
accountable for the time taken, then performance was 
worsened, not improved. This suggests that efforts aimed 
at reducing time pressure and cognitive load could also 
help improve performance. 
 
The above approach is best used to combat issues of 
complacency and, to some extent, misplaced trust. It does 
not help with skill degradation, loss of situational 
awareness or unreliable modal estimates. To combat skill 
degradation, the ‘pilot’ needs to be put in a situation 
where they use their skills and get correct feedback. Real 
pilots currently spend little time flying planes: this could 
be combatted by making them train in simulators, or by 
requiring them to fly the plane by hand in situations when 
this can be done with acceptable risk levels (such as when 
planes have to fly without passengers on board). Traders 
or insurance underwriters could be required to make a 
proportion of their decisions based on their skills alone, 
without using models27. This would also be useful for 
comparing and contrasting the skills of humans versus 
that of models, and for designing further interventions and 
improved approaches. 
 
It should also be possible to make airplane pilots perform 
tasks that maintain their situational awareness of the 
plane. The various features of the plane’s situation (height, 

                                                      
27 There could be “back-to-basics” days where the traders are denied use of 
models for a day and performing analysis from first principles, checking their 
assumptions and the limitations of these as they go. 
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heading, angle of attack, etc.) could be gamified28, for 
instance, rewarding the pilot in a competitive way that 
maintains their vigilance and awareness. Or pilots could 
be required to perform tasks can only be completed 
successfully if they keep a successful track of the plane’s 
properties. 
 
The same approach could be used in finance, but it is less 
clear what the critical variables are, and how relevant they 
are to issues of tail risk, where a lot of the financial risk 
lies. The ideal would be to make sure that human skills 
remain valuable in day-to-day decisions, but this may not 
be achievable. Modern trading algorithms trade millions of 
times a second; there is no way for humans to develop a 
reasonable situational awareness on these scales. Large 
errors are likely to be “Black Swans” (such as the 2007-
2012 financial crisis). Since these events are rare and 
hard to predict, humans would be unlikely to have 
relevant awareness or skills, and it is very unclear how 
they could be trained to acquire them (Shanteau, 1992). 
 
Informing the ‘pilot’ of the weaknesses and errors of the 
‘autopilot’ gave mixed results29. Typically, ‘pilots’ 
overestimate the reliability of the ‘autopilot’ until they had 
experience of it making errors; after that, they mistrusted 
even reliable ‘autopilots’. Upon being informed of the 
features of the ‘autopilot’ and why it could err, they 
started trusting the ‘autopilot’ again. But this trust 
increase happened in both situations where it was justified 
(high reliability) and when it was not (low reliability) 
(Dzindolet, Peterson, Pomranky, Pierce, & Beck, 2003). 
So simply being aware of the strengths and weaknesses of 
the ‘autopilot’ seems insufficient. 
 
Industry relevant points: 

 It should be possible to give underwriters better 
understanding of the weaknesses of their models. 
Some of the training given to underwriters could be 
akin to that given to model-makers. 

 Such training could make use of feedback and 
exercises and hypothetical situations: the training 
should be tailored to take advantage of human abilities 
and limitations, rather than fighting against them. 

 If the retraining prevents skill degradation, it will help 
to maintain performance during periods where the Cat 
models are suspected to be or have become 
unreliable, as human expertise will be able to 
compensate for this to some extent. 

                                                      
28 Using game-like elements to promote user engagement and learning 
(Zichermann & Cunningham, 2011). 
29 “One study found that making users aware of the DSS reasoning process 
increased appropriate reliance, thus reducing Automation Bias.” (Goddard, 
Roudsari, & Wyatt, 2012) 

 However, a lot of retraining ideas may seem like good 
ideas, but won’t achieve anything: many problems are 
subconscious “system one” failings rather than failed 
rationality. It is not enough for the retraining idea to 
sound good, it must be backed up by evidence (and its 
implementation and effects assessed). 

 There are limits to what can be done with retraining 
only. Though it seems the most obvious and easy 
answer, other types of solutions may prove to be 
easier and more effective. 

 

Change the autopilot 
Rather than re-training the ‘pilot’, the ‘autopilot’ itself can 
be changed to reduce the problem. Decreasing the level 
of automation can help: there is evidence that the best 
‘autopilots’ are those that support processes of 
information integration and analysis on the part of the 
‘pilots’. Those that instead provide specific 
recommendation to action worsen the problem 
(Parasuraman & Manzey, 2010) (Crocoll, 1990). 
 
Varying the reliability of the ‘autopilot’ can also improve 
performance (Goddard, Roudsari, & Wyatt, 2012): if the 
‘pilot’ has reasons to suspect that the ‘autopilot’ is not 
perfect, they are less likely to trust it blindly. There seems 
to be a valley in which the autopilot problem comes into 
sharp relief: for low reliability, the ‘pilots’ will perform as 
before, and for high reliability, the ‘autopilot’ will work 
better that the ‘pilot’ did beforehand. It’s in between, with 
a flawed ‘autopilot’ and underperforming ‘pilot’, that the 
danger lies30. Varying the reliability of automation is an 
attempt to move out of this valley, as far as the ‘pilot’ is 
concerned. 
 
One useful intervention is to have the ‘autopilot’ display 
its confidence levels31, and have these be updated 
(McGuirl & Sarter, 2006) (Dzindolet, Peterson, Pomranky, 
Pierce, & Beck, 2003). Many models already do this to a 
large extent, including standard deviations and other 
uncertainty information in their outputs. The main 
weakness of this approach is that it requires the model to 
have accurate calibration of its own uncertainty, including 
model uncertainty – the probability that the model itself is 
wrong, which cannot be calculated from within the model. 
The design of the interface has some effect on the 
autopilot problem as well. But all these are mainly efforts 
to reduce complacency and excess trust in the ‘autopilot’. 
They may reduce skill degradation, if they make the ‘pilot’ 

                                                      
30 And much of our important automation systems fall into this area and will do 
for the foreseeable future. 
31 For Watson, the IBM computer system that ended up winning the ‘Jeopardy’ 
quiz show, displaying and taking account of its own uncertainty levels was 

absolutely crucial http://www.aaai.org/Magazine/Watson/watson.php . 
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more likely to use their own expertise to overrule the 
‘autopilot’. But they do not address the loss of situational 
awareness or the unreliable modal estimate problem. 
 
A very intriguing example of successful retraining-through-
model-change happened after Kahneman redesigned the 
Israeli army interview system. After establishing that the 
previous subjective interview system was worthless for the 
task it was attempting to do, he designed a set of rigid 
criteria which interviewers were to follow (an autopilot, in 
other words). The interviewers insisted that they also be 
able to give their subjective opinions – opinions which 
were surprisingly accurate. In fact the new combined 
trained-subjective plus ‘autopilot’ method was more 
effective than either the ‘autopilot’ or the old purely 
subjective method. Thanks to the ‘autopilot’, the ‘pilots’ 
gained increased skill at their jobs. Replicating this 
achievement seems challenging, but it is an intriguing 
example, hinting at the possibility of further improvements 
– the right ‘autopilot’ can increase the ‘pilot’s’ skills, 
rather than degrading them. 
 
Industry relevant points: 

 New platforms like Oasis will give insurers 
opportunities to tweak their models and select more 
suitable ones (though model-shopping may become a 
problem). 

 This selection process must consider the human-model 
interface, and not just the abstract virtues of the 
model. 

 Over the short term, this is most easily done by 
redesigning interface without changing the models at 
all. 

 Over the long term, models that increase the 
understanding of the model-user should be better than 
models that don’t, even if the second type are 
abstractly “better”. 

 Just as the retraining in the previous section, this sort 
of intervention is likely to only result in limited 
improvements. Both are more patches to the autopilot 
problem than fundamental solutions to it. 

 

Change the pilot’s role 
The previous two strategies were attempts to undo part of 
the autopilot problem, to return the situation to the status 
quo ante for the ‘pilot’, while preserving the use of the 
‘autopilot’. This may not be feasible in many problems: 
the previous approaches are good at correcting human 
error, but much weaker at addressing the other causes of 
the problem. 
 
Another alternative is to abandon the idea of re-creating 
the previous status quo, and instead change the role of 

the ‘pilot’ to better suit the new situation. There are many 
examples of professions transforming themselves 
completely when automation entered their field. The word 
processor abolished the job of the old secretary, causing 
redundancies for some, and moving the remaining into 
the new role of personal assistant. The web and 
smartphone caused mini-autopilot problems as human 
factual memory, being less useful, ended up degrading 
(Sparrow, Liu, & Wegner, 2011). Instead, people 
compensated by becoming adept Googlers, developing 
new types of expertise from new types of feedback – just 
as calculators in their day moved people away from 
mental arithmetic to more conceptual tasks. 
 
Similar restructuring of roles are common whenever 
automation becomes viable. Airline pilots have started 
along this path, becoming managers of the plane32 and 
this will no doubt continue as the autopilots improve, and 
take on more roles such as taking off and landing. The 
pilots of unmanned aerial vehicles have already made this 
transition, fitting into a completely new role and learning 
new skills, as well as encountering new types of 
problems33. This role restructuring may not be enough to 
fully solve the autopilot problem, but may alleviate it to a 
great extent, and would generally be a better use of 
human skills. 
 
After the flash-crash34 automatic shut-down mechanisms 
were introduced to stop things so that they could be 
reviewed by humans. Thus the automation process was 
changed so that humans could step in, in a new role, that 
of reviewer rather than trader. 
 
This has also happened to some extent in the insurance 
industry. Underwriters and other insurance staff are 
starting to not just make use of their models, but analyse 
them and benchmark them35 as well36. The Oasis project37 

                                                      
32 “In modern airliners, the pilot's main responsibilities are to monitor the 
automatic systems to make sure the plane is flying correctly and to alter the 
course as needed.” 
http://science.howstuffworks.com/transport/flight/modern/airline-crew1.htm . 
“The climb continues with your pilots “hand flying” the plane....all the way up to 
29,000 feet where, federal regulations dictate they must turn on the autoflight 
system.”  http://flyingforeveryone.blogspot.co.uk/2012/01/autopilot-myth-what-
your-pilot-really.html . 
33 Such as the stress of watching hours of close-up videos of the people killed in 
drone strikes: “After a strike, operators assess the damage, and unlike fighter 
pilots who fly thousands of feet above their targets, drone operators can see in 
vivid detail what they have destroyed.” 
http://www.nytimes.com/2011/12/19/world/asia/air-force-drone-operators-
show-high-levels-of-stress.html?_r=0 . 
34 A crash which occurred on the 6th of May 2010, in which the Dow Jones 
Industrial average lost 600 points in 5 minutes, before regaining most of the 
value in the next few minutes. High-frequency traders contributed strongly to 
this event ( U.S. Securities and Exchange Commission and the Commodity 
Futures Trading Commission, 2010). 
35 At the most basic level, this can involve using a more simple approach (such 
as a certain % of Total Sum Insured) as a sanity check on the complex autopilot. 
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is increasing this effect, by making the model components 
modular and changeable. This makes the model-user 
implicitly responsible for these choices: whereas before 
there were only a few standard model choices, now there 
are many, and choosing among them is an exercise that 
must ultimately be justified. 
 
This can increase accountability for the model user, which 
has already been shown to decrease human error and 
complacency.  Ideally this approach could help to 
maintain both skill and situational awareness, as the ‘pilot’ 
is continually trying to understand the model/’autopilot’ 
and compare it with reality (though at the risk of 
introducing human biases into the system (Tversky & 
Kahneman, 1974)). This has the added benefit of making 
the model into less of black box, so that more people (the 
‘pilots’, but also their managers) can actually understand 
where decisions are coming from. 
 
It may also be possible to reduce the impact of unreliable 
modal estimates. If the ‘pilot’ is aware of this problem, 
and is given an explicit mandate, they may be able to 
address the problem directly. They could, for instance, 
increase their uncertainty, take extra precautions. Traders 
could invest in extreme events, and insurance 
underwriters could pay more attention to tail risk. They 
could seek to find tools beyond the ‘autopilot’ to measure 
or bound the variables there is uncertainty about38, or be 
tasked with benchmarking the various ‘autopilots’. All in 
all, giving the ‘pilot’ the explicit role of compensating for 
the weaknesses of the ‘autopilot’ could be a sound 
strategy39. 
 
Industry relevant points: 

 This is probably the most promising route over the 
long term. 

 It opens the possibility of completely solving the 
autopilot problem, by moving the human component 
into new areas where their new skills will be effective. 

 It’s hard to know what needs to be done right at the 
moment, though: more research and experimentation 
is needed. 

 There will need to be a greater role for those tasked 
specifically with examining and tracking weaknesses 

                                                                                          
36 A change that may be needed: the Future of Humanity Institute’s paper on the 
future of employment ranks underwriters as very susceptible to be replaced by 
automation (Frey & Osborne, 2013)! 
37 A new, open and modular catastrophe modelling approach, see 
http://www.oasislmf.org/ . 
38 For instance, insurance companies often use market-share models as a sanity 
check for their more complex catastrophe models. 
39 Just as the ‘autopilot’ is often designed to compensate for the weaknesses of 
‘pilot’. 

and assumptions of different models and their 
associated decision-makers. 

 This is the only approach that can allow estimates of 
unmodelled risks (such as some secondary perils from 
wind, flood or earthquake). Having people tasked with 
comparing models with each other and with reality, 
thus getting a general estimate of model error, can 
give an estimate of the magnitude of such missing risk. 

 It could allow humans to focus their attention on 
estimating the impact of various changes on the 
models – for instance man-made interventions such as 
reclaiming land and flood diversion. These changes call 
some of the model assumptions into question, and it is 
important to figure whether the model still retains 
validity. 

 The role of underwriters may shift to make them more 
into model-analysts than model users. 

 

Accept the cost of the autopilot problem 
It may be worth keeping the autopilot, even if the 
autopilot problem can’t be fixed. The ‘autopilot’ has 
caused a deskilling of ‘pilots’, certainly. But the ‘autopilot’ 
has many uses, as well. It provides a regularity and 
smoothness at the controls that no human could match 
over long periods of time. It isn’t subject to fatigue or 
emotional stress and rarely behaves erratically, either in 
the cockpit, in the market or in clinical situations. It should 
be noted that flying is safer than ever40! 
 
In financial markets and insurance, sophisticated 
mathematical models have allowed the trading of 
previously untradeable securities, or the insurance of 
previously un-insurable risks.  GPS devices may cause the 
driver to become more of an automaton, but they are 
more likely to arrive at their destination at a predictable 
time. 
  
Thus there are situations where the benefits of automation 
outweigh the drawbacks (given the particular weaknesses 
of the particular other half of the system – the human), 
even after taking the autopilot problem into account. After 
all efforts are made to mitigate that problem, sometimes 
the remaining issues just have to be accepted. There 
seems no sign that automation will be reversed in driving 
and piloting (the trends seem to strongly point in the other 
direction41), so in the assessment of many decision 
makers, the autopilot problem is not bad enough to go 
back to the old ways. There are many cases in which 

                                                      
40 The International Air Transport Association (IATA) announced that the 2012 
global accident rate for Western-built jets was the lowest in aviation history 
http://www.iata.org/pressroom/pr/pages/2013-02-28-01.aspx . 
41 The Google self-driving car being an extreme example of this trend, but even 
normal cars increasingly contain driver's aids. 
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statistical prediction rules make better predictions than 
leading experts (Bishop & Trout, 2005). So it is hardly 
surprising that there would be many cases where the 
combination of ‘autopilot’ and less skilled ‘pilot’ 
outperforms a more skilled but unassisted ‘pilot’. 
 
Of course, when this is done, everyone should be aware of 
the cost that is being incurred. Modellers will have to 
accept the limitations of their model, and find ways of 
dealing with them42 (for instance, by increasing uncertainty 
to account for uncertainty about the model, rather than 
simply within the model, or by using). Pilots will have to 
face up to their loss of skill and no longer believe they can 
fly their plane as once they could. 
 
Industry relevant points: 

 The autopilot problem will likely never be solved 
completely, so some acceptance of the costs is 
inevitable. 

 Accepting the costs cannot be done without a good 
assessment of these costs, so that needs to be a 
priority. It is important to find other methods for 
bounding the values of various uncertain variables. The 
approach in “Probing the Improbable” can be used to 
synthesise this knowledge. 

 Properly assessing the costs will go some way towards 
allowing them to be mitigated – but not all the way. 
The two approaches can often proceed together, 
however. 

 It is likely that the best approach is to accept that 
some loss cannot be modelled (e.g. supply chain risk, 
possibly), and that it should be bounded sensibly, 
while the rest of the loss can be treated using other 
methods. 

 Properly accounting for tail risks is the main challenge 
to accepting the costs. 

 

Reduce or remove the autopilot 
Finally, the autopilot problem may be so severe, that the 
only solution is to remove the ‘autopilot’ and go back to 
the old way of doing things43. The Warren Buffet style of 
investing is an example of this: cutting down on the use of 
derivatives and models and making greater use of value 
investing44. Mercedes did the same with its “Sensotronic 

                                                      
42 For instance, by increasing uncertainty to account for uncertainty about the 
model, rather than simply within the model. Or they could use alternative 
techniques to independently bound the values of certain parameters. 
43 Though one must beware the availability heuristic (Tversky & Kahneman, 
1973). The recent flaws of the autopilot will loom large, while the problems of 
pre-autopilot performance will not be so available. Considering that autopilots 
are often developed in areas of poor human performance, it may still be better 
to stick even with a poorly performing autopilot. 
44 See various articles on Buffet’s investment style, such as 
http://dealbook.nytimes.com/2011/03/14/derivatives-as-accused-by-
buffett/?_r=0 and http://www.investopedia.com/articles/05/012705.asp . 

Brake Control System”, which included a software model 
of how the brake pedal should “feel”. After customer 
protests and software errors, the ‘autopilot’ was removed, 
and the company went back to a more conventional 
hydraulic braking system45. In many situations – such as 
air-traffic control – there are automation “tipping points” 
where the ‘pilot’ accepts a certain level of automation 
without problem, but rejects any higher level of 
automation (Bekier, Molesworth, & Williamson, 2012). 
 
In Tetlock’s analysis of political predictions (Tetlock, 
2005), he demonstrated that “foxes” (who have a flexible, 
adaptive, tentative cognitive style) outperform 
“hedgehogs” (who are said to "know one thing and know it 
well" and to focus on a single, coherent theoretical 
framework in their analyses and predictions). This 
framework forms a model – an ‘autopilot – that the 
hedgehogs will then ‘pilot’. In contrast, the foxes are less 
welded to any single model and have developed the skills 
that allow them to reach better conclusions using a variety 
of different methods. 
 
Removing one ‘autopilot’ need not mean eschewing 
automation entirely. For instance, models based on 
fundamentals have had some success at predicting 
election outcomes, but poll-based models have fared 
better46. It could be that the best role for the ‘pilot’ is 
simply to choose between ‘autopilots’. 
 
In contrast, when statistical prediction rules make better 
predictions than leading experts (Bishop & Trout, 2005), 
adding human expertise to the mix often adds only noise: 
the performance of the mixed system is degraded. Thus 
there seem to be multiple situations where the ‘autopilot’ 
and the ‘pilot’ cannot mix: one of them must be removed 
to ensure the improvement of the system. 
 
Industry relevant points: 

 Doing without models does not seem a feasible 
strategy for some insurers. 

 Reducing the use of the model may be successful if 
humans can be expected to develop relevant skills. 
Hence model use can be reduced for intermediate 
risks, where human expertise may have developed, but 
not for tail risks. 

 Choosing different models, or some synthesis of 
models, or using human judgement to choose between 

                                                      
45 See for instance the report in ‘Autoweek’ at 
http://www.autoweek.com/apps/pbcs.dll/article?AID=/20051216/FREE/512160
10&SearchID=73232069810043 . 
46 See Nate Silver’s analysis at 
http://fivethirtyeight.blogs.nytimes.com/2012/03/26/models-based-on-
fundamentals-have-failed-at-predicting-presidential-elections/ . 
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models, may be a better way to successfully reduce 
the importance of a single model. 

 Small scale, mid-term experiments without use of 
models could be attempted in the company to test 
their efficacy. Again, this is not likely to be informative 
for tail risks. 

Summary and conclusion 
The autopilot problem is an important and general 
problem across many fields that make use of automation 
to assist or replace human decision making. Due to loss of 
situational awareness, skills degradation, misplaced trust 
and complacency, and unreliable modal estimates, the 
performance of the human component of the system will 
be degraded from what it was before the introduction of 
automation. 
 
This problem is not easy to solve. Misplaced trust and 
complacency stand out as the easiest to cope with, with a 
large class of potential solutions, but the other factors are 
harder to address. Since the scope of the autopilot 
problem is so broad, however, many different fields have 
experimented with many different approaches to dealing 
with it – and many of these solutions are at least partially 
transferable to other fields. These solutions come under 
five broad categories. The most obvious are retraining the 
human overseer or reprogramming the ‘autopilot’ to 
ensure a better interaction between the two, one that 
alleviates the problem. It is also possible to radically 
change the human’s role to one more suited for the new 
situation. Doing without automation – returning the 
situation to the status quo ante – or severely reducing it, 
is another approach. Finally, if all mitigation fails, there is 
always the option of accepting the presence of the 
autopilot problem and managing the system as best can 
be done with that knowledge. 
 
These solutions seem highly situationally dependent: there 
are no overarching solutions that apply to every variant of 
the autopilot problem. Instead, individual interventions 
must be crafted with care, with an eye on the relevant 
literature and an eye on the specific details of the 
individual setup being analysed. Continuous feedback and 
monitoring of the intervention is essential, to assess the 
degree of improvement, and what form they take. It is 
hoped that the analysis in the present paper will 
contribute to many such successful interventions, and that 
further research hones and improves these suggestions 
far beyond what was presented here. Automation has 
contributed and will contribute much more to most fields 
of human endeavour, so attempts to eliminate or reduce 
the autopilot problem will ensure that it reaches its full 
positive potential. 
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White Paper Context 
(Re)insurers use sophisticated but imperfect models and data sets to estimate risk.  

Decisions about when to search for errors, what types of errors to look for, and 

when to stop looking for errors are biased in favour of vindicating pre-existing 

views about risk.  

This pattern of biased error search is partially driven by: 

• Confirmation bias: a tendency, usually subconscious, to seek, interpret, and 

recall evidence in a way that confirms one’s current opinions; and  

• Automation bias: a tendency to become overly reliant on automated decision 

aids, at the expense of vigilant information seeking and processing. 

Under time constraints, biased error search leads to finding more expected errors 

and fewer unexpected errors. 

The literature on confirmation and automation biases point to a number of 

mitigation methods. Testing some practices could shed light on the trade-offs 

involved in biased error search and increase detection of unexpected errors. 

Industry Relevance 
If we focus on our industry, we can see that (re)insurers are exposed to the risk of 

biased error search in two different dimensions: the validation of their models, and 

the review of model outputs. 

The complexity of validating models means that the task often relies on: 

• The movements from the previous version (e.g. Internal Model Governance 

under Solvency 2); and 

• RAG-status (“Red, Amber, Green”) against pre-set criteria. 

 

While this management by exception has certain value in terms of efficiency, it has 

the drawback of taking the attention away from potential deficiencies in the figures 

produced or the validity of the pre-set criteria for RAG-status. For instance, the 

recipients of a model update report are less likely to think “model deficiency or 

uncertainty” if the report shows little movement from period to period and has 

green status.  

A typical example when reviewing model outputs would be an underwriter 

reviewing the return-period losses for their portfolio, in order to decide how much 

to rely on the figures for their decision. 

The use of expert judgement for complex, low probability estimation is notoriously 

difficult, and the underwriter is more likely to question results which differ from 

their experience of actual events or previous model outputs, but not otherwise. 
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This is especially a problem in rapidly changing risk 

environments (e.g. large growth in exposed values on 

the Florida Coast in recent decades), where a model 

providing stable outputs might mean that it is not 

reflecting the risk adequately. 

Next Steps 
This white paper sets the scene for further research, in 

particular: 

• Evidencing any bias in (re)insurance modelling 

practices, and assessing their potential impact on 

the quality of modelling results; 

• Assessing whether there is a systemic risk 

associated with this bias, and the consequences for 

individual (re)insurers and the industry; 

• Testing the effectiveness of mitigation methods. 
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Executive Summary 
Insurance companies use sophisticated but imperfect models and data sets to 

estimate risk. Decisions about when to search these models and data sets for 

errors, what types of errors to look for, and when to stop looking for errors are 

biased in favor of vindicating pre-existing views about risk. This pattern of 

biased error search is partially driven by confirmation bias and automation bias. 

Under time constraints, biased error search leads to finding more expected 

errors and fewer unexpected errors, but more errors in total. Quantitative 

information about these trade-offs is unknown, but the trade-offs could be 

substantial. 

There is not yet enough evidence to strongly recommend effective 

interventions. However, based on a series of interviews with employees in the 

insurance industry, a review of interventions aimed at reducing confirmation 

bias and automation bias, and a model of the consequences of biased error 

search, we recommend testing the following practices on a small scale, 

comparing the results with a control group: 

1. Keep a record of all manual adjustments from initial settings on 

catastrophe models and exposure data. Require modellers to write a 

one-sentence reason whenever they make a manual adjustment to a 

catastrophe model or the exposure data. Inform modellers that there 

will be randomly spot checks of adjustments and non-adjustments. 

2. Require underwriters to write at least one sentence about why they 

might have overestimated the loss from accepting a contract, and once 

sentence about why they might have underestimated the loss. Pass 

this on to risk review, and inform the underwriters in advance that this 

will be done.  

3. Keep a record of model-estimated losses, both before and after making 

all manual adjustments, as well as the estimated losses from 

underwriters, and then periodically compare these with actual losses. 

Let modellers and underwriters know that this will be done. 

4. Randomly select some model-based estimates for detailed inspection 

in cases where nothing seems amiss in order to find base rates of error 

in such cases. 

5. More closely review cases where unadjusted models, adjusted models, 

and underwriter loss estimates differ substantially. 

6. Educate modellers, underwriters, and actuaries on how to recognize 

confirmation bias and avoid it. 

7. Design modelling software that displays an educated estimate of the 

model’s reliability for the case in which it is being used. 

A test of these practices would shed light on the trade-offs involved in biased 

error search and increase detection of unexpected errors. 
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Section 1: Introduction  
The insurance industry makes significant use of 

catastrophe models and exposure data to help estimate 

losses from insurance contracts. These model-based 

estimates form a useful baseline for estimating losses, but 

they can be substantially mistaken for a variety of reasons. 

Modellers and underwriters have some experience with 

past losses from similar contracts, and use their 

experience and intuition to decide when and how to spend 

effort examining model-based estimates of losses. If they 

lean too far in favor of searching for errors primarily in 

cases where model-based estimates seem wrong, there is 

a risk of tuning models and data sets too much in the 

direction of pre-existing opinions. On the other hand, 

focusing the search for errors in places where one expects 

to find them can lead to finding more errors per unit time. 

The objectives of this paper are to assess how modellers 

and underwriters make decisions about when to search for 

errors in these estimates, what types of errors to look for, 

and when to stop looking for errors, what the costs and 

benefits of this decision process is, and how this decision 

process might be improved. The points here are quite 

general, however, and would apply to many types of error 

search. 

This paper draws on unstructured interviews during a 

week-long immersion period at a major insurance 

company. We spoke with modellers, underwriters, 

actuaries, risk reviewers, and other employees. The 

interviews focused on many topics, but one theme was 

the process for identifying possible errors in the 

company’s use of catastrophe models and data sets and 

adjusting the models and data sets in light of errors or 

possible improvements to make. These interviews suggest 

that the insurance industry searches for errors in model-

based loss estimates in ways that tend to vindicate pre-

existing views of risk. 

In cognitive science, confirmation bias is a tendency, 

usually subconscious, to seek, interpret, and recall 

information in a way that confirms one’s current opinions 

(Nickerson 1998, p. 175).1 Our interviews strongly 
                                                            
1
 “As the term is used in this article and, I believe, generally by 

psychologists, confirmation bias connotes a less explicit, less consciously 

one‐sided case‐building process. It refers usually to unwitting selectivity in 

suggested that confirmation bias played a major role in 

error checking and model adjustment. 

In ergonomics and human factors, automation bias is a 

tendency to place too much trust in the results of 

automated processes for detecting risk, sometimes 

leading to a lower detection rate than unaided humans 

can achieve without automation. There is a more precise 

definition in section 5. Automation bias has been studied 

primarily in the aviation industry, though related problems 

have arisen with automated decision aids in clinical 

decision-making as well. There are some potentially 

significant analogies with the use of models in insurance, 

and many suggestions for dealing with automation bias 

could potentially be useful for improving model use in 

insurance. 

The outline of the rest of the paper is as follows. Section 2 

presents a simple framework for understanding biased 

error search, drawing on an intuitive example, an informal 

model, and an example from the history of science. It also 

delves into the cognitive science literature on confirmation 

bias and the ergonomics literature on automation bias. 

Section 3 reports on results from a series of interviews 

with modellers, underwriters, actuaries, and other 

employees in the insurance industry. These interviews 

suggest that the framework outlined in section 2 is 

realistic. Section 4 uses the framework developed to 

consider the positive and negative consequences of 

biased error search for the insurance industry, and 

identifies some key questions for developing our 

understanding of the consequences of biased error 

search.  

Section 5 offers recommendations for experimentally 

measuring the positive and negative consequences of 

biased error search and mitigating its negative effects. The 

recommendations for mitigating negative effects are 

based on reviews of experimental studies which attempted 

to reduce the role of confirmation bias and automation 

bias. 

                                                                                                     
the acquisition and use of evidence….The assumption that people can and 

do engage in case‐building unwittingly, without intending to treat evidence 

in a biased way or even being aware of doing so, is fundamental to the 

concept.” (Nickerson 1998, pp. 175‐176) 
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Section 2:   
Background on biased error search 

Example: checking a dinner bill for errors 
Suppose five friends go out to eat at a restaurant and they 

decide to split the bill. No one has added up the total, but 

each of them roughly expects to pay £30. Consider three 

possibilities: 

1. The bill comes back with a total that’s in line with 

what everyone roughly expected: £175, or £35 

per person. 

2. The bill comes back with a total that is 

surprisingly high: £300, or £60 per person. 

3. The bill comes back with a total that is 

surprisingly low: £75, or £15 per person. 

Whether they check the bill for errors, and what kind of 

errors they look for, depends on how the total on the bill 

fits with their expectations, and perhaps also on whether 

correcting the bill is in their interests. 

 In the first case, they might glance at the bill, but they 

are likely to pay without looking too closely. If their 

expectations are roughly correct, this works fine. If 

their expectations about the cost of the meal are far 

too high or far too low, this could mean overpaying or 

underpaying. 

 In the second case, they are likely to look at the bill 

and check to see if there was a mistake. Perhaps they 

got the bill for another table, perhaps the waiter 

charged them for really expensive wine they didn’t 

order, or perhaps they accidentally ordered really 

expensive wine. 

 In the third case, a very scrupulous person might be 

about equally likely to check the bill for errors as they 

would be in the second case. If they do, they probably 

look for items the waiter forgot to charge them for, or 

check to see if they gave them a bill for the table of 

two sitting next to them. 

 

In catastrophe modelling, the concept of an error is not 

completely straightforward.  

 

 

Rather than thinking of catastrophe models as right or 

wrong, some may find it more appropriate to consider the 

models as more or less useful, or better or worse 

approximations of reality, relative to a particular purpose 

for  which the model is being used. In this paper, we will 

be ecumenical about our use of the word “error”, and 

include as errors both straightforward mistakes (such 

straightforwardly incorrect exposure data) as well as more 

subtle deviations from what best fits the purpose for 

which the model is being used on a particular occasion. 

A simple framework for understanding biased 
error search 
The example above is a special kind of confirmation bias 

which we’ll call biased error search. Biased error search 

generally involves some prior expectations, an imperfect 

estimation process, and a decision to check for errors that 

is biased in favor of looking for errors when the estimate 

doesn’t fit with prior expectations.  

Suppose we are interested in the value of some quantity 

X. For illustrative purposes, we’ll continue to consider the 

case where X is how much the group owes the restaurant, 

but X could be the expected loss of writing an insurance 

contract or the 99.5% value at risk on a portfolio for a 

certain class of business. They have some prior 

expectations or assumptions about the value of X. These 

expectations or assumptions might be specific (such as 

“exactly £150”), general and vague (such as “between 

£100 and £200”), or general and precise (such as “my 

subjective probability over X is lognormally distributed and 

I’m 95% confident the cost is between £100 and £200”). 

The true value of X might, be, roughly speaking, about 

what they expect, be surprisingly low, or be surprisingly 

high, as in Figure 1. 

When they hear about an imperfect estimate of X, as they 

do when they get their dinner bill, they make a decision 

about how much weight to put on that estimate and 

whether to check for errors in the estimate. This tends to 

go one of three ways: 
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1. If the estimate of X generally fits with their prior 

expectations about X, (e.g., if the total on the bill 

is about what they expected) this will typically 

reinforce their prior assumptions about X, and is 

unlikely to result in careful scrutiny of the 

estimate, as in Figure 2. This also tends to 

reinforce any assumptions they were using to 

reach this estimate. 

2. If the estimate of X is significantly higher than 

their prior expectations about X, then they spend 

more of their effort looking for ways in which the 

estimate might be too high (e.g., checking to see 

if they got charged for items they didn’t order), as 

in Figure 3. If they fail to find errors, this will tend 

to undermine their belief in any assumptions they 

were using to reach this estimate. 

3. If the estimate of X is significantly lower than their 

prior expectations about X, then they spend more 

of their effort looking for ways in which the 

estimate might be too low (e.g., checking to see if 

they didn’t get charged for some items they did 

order), as in Figure 4. If they fail to find errors, 

this will tend to undermine their belief in any 

assumptions they were using to reach this 

estimate. 
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Figure 1: Expectations 

 

Figure 2: Estimate fits expectations, limited/no search for errors 

 

Figure 3: Surprisingly high estimate, search for errors that would result in an overestimate 

 

Figure 4: Surprisingly low estimate, search for errors that would result in an underestimate 
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An example of biased error search from the 
history of science 
Biased error search is also a familiar problem in science, 

as illustrated by this example from Richard Feynman: 

“Millikan measured the charge on an electron by 

an experiment with falling oil drops, and got an 

answer which we now know not to be quite right. 

It’s a little bit off, because he had the incorrect 

value for the viscosity of air. It’s interesting to 

look at the history of measurements of the charge 

of the electron, after Millikan. If you plot them as 

a function of time, you find that one is a little 

bigger than Millikan’s, and the next one’s a little 

bit bigger than that, and the next one’s a little bit 

bigger than that, until finally they settle down to a 

number which is higher. 

Why didn’t they discover that the new number 

was higher right away? It’s a thing that scientists 

are ashamed of—this history—because it’s 

apparent that people did things like this: When 

they got a number that was too high above 

Millikan’s, they thought something must be 

wrong—and they would look for and find a 

reason why something might be wrong. When 

they got a number closer to Millikan’s value they 

didn’t look so hard. And so they eliminated the 

numbers that were too far off, and did other 

things like that.” (Feynman 1974, p. 12) 

As Feynman suggests in all but name, this is an example 

of biased error search because the scientists looked 

harder for errors—and tended to find them—when they 

got answers that were further away from their prior 

expectations, where their prior expectations were heavily 

informed by previous work. In this case, a group using 

biased error search took longer to converge on the correct 

estimate of the charge of an electron than a group using 

an unbiased search for errors. 

Biased error search as a variety of confirmation 
bias 
Confirmation bias is a tendency, usually subconscious, to 

seek, interpret, and recall evidence in a way that confirms 

one’s current opinions. In contrast, a perfectly rational 

approach to processing evidence with no time constraints 

would consider all the evidence for and against all 

hypotheses under consideration, without 

disproportionately seeking evidence in favor of what one 

currently believes, disproportionately remembering 

evidence in favor of what one believes, or 

disproportionately processing evidence in ways that tend 

to confirm what one already believes. 

In the context of correcting insurance models and data 

sets for errors, the tendency to seek information in ways 

that justifies one’s current opinions seems to be the most 

relevant. Citing (Koriat, Lichtenstein, & Fischhoff, 1980) in 

a review of the literature on confirmation bias, Nickerson 

(1998, p. 177) found that: 

“People tend to seek information that they 

consider supportive of favored hypotheses or 

existing beliefs and to interpret information in 

ways that are partial to those hypotheses or 

beliefs. Conversely, they tend not to seek and 

perhaps even to avoid information that would be 

considered counterindicative with respect to 

those hypotheses or beliefs and supportive of 

alternative possibilities,”  

In our dinner bill example, this would mean that if they 

expected the dinner bill to be between £100 and £200 

and they got a bill saying £300, they’d be more likely to 

look for evidence that they had been overcharged (e.g., 

because they charged them for food they didn’t buy or 

gave them a bill from a table with more people) and less 

likely to look for evidence that they had been 

undercharged (e.g., because they forgot to charge them 

for food that they did buy or they gave them a bill from a 

table with fewer people). In an insurance context, it might 

mean that if a model gives an expected loss estimate for 

some exposures in Miami that seems too high, they’ll be 

more likely to look for evidence that the estimate is too 

high (e.g., because the damageability was set too high or 

because historical losses are lower than the estimate 

assumes) and less likely to look for evidence that the 

estimate is too low (e.g., because the damageability was 

set too low or because historical losses are higher than 

what the estimate assumes). 
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Motivated cognition vs. honest biased searches 
Confirmation bias can be influenced by motivated 

cognition, i.e. a selective search for evidence that is 

biased in favor of getting answers that they want to hear. 

For example, if the estimate of X is more favorable to their 

interests (e.g., if the total on the bill seems too low and 

they don’t care much about being honest), then they’ll be 

less likely to check for errors than they would be in a case 

where the estimate of X was less favorable to their 

interests. In an insurance context, a broker preparing a 

submission and hoping for a low price on a contract will 

be less likely to search for errors in a low estimate of loss 

than a high estimate of loss. Error searches can also be 

sensitive to market dynamics. For instance, models may 

be more likely to be checked if margins are very thin due 

high estimated loss costs. Like all forms of confirmation 

bias, motivated cognition will often be subconsciously 

driven. 

A group’s decision about whether to check for errors can 

also be influenced by an honest search for information 

that pays attention to how much time they have to check 

for errors and the probability of finding errors. In more 

detail, biased error search can save time and help find 

errors if prior expectations are reasonable. If a group had 

all the time in the world and they really just wanted an 

accurate estimate of X, they would check for ways in 

which their estimate of X might be too high and the ways 

in which it might be too low in all three cases (surprisingly 

high estimate, estimate roughly fits expectations, 

surprisingly low estimate). In the real world, it costs time 

and effort to make these checks, so people focus on the 

cases where a check is more likely to result in finding an 

error. If they have accurate enough prior expectations—

so that, e.g., if the estimate of X seems too high then it’s 

more likely to really be too high than it is in a case where 

it seems to low—then they can save time through biased 

error searches. Still, there is no free lunch. As long as 

prior expectations are imperfect, biased error search 

implies a smaller chance of finding unexpected errors. 

 
 

Automation bias as a driver of biased error 
search 
In addition to confirmation bias, automation bias can be 

another driver of biased error search. Automation bias is 

defined in terms of the concept of an automated decision 

aid, meaning devices that support human decision-making 

in complex environments. Examples of automated 

decision aids include aviation systems like the Traffic 

Conflict and Alert System and the Ground Proximity 

System. These systems monitor the environment and 

provide specific recommendations, like “Pull up! Pull up!” 

to pilots. Automated decision aids in medicine can 

recommend treatments or drug dosages (Parasuraman 

and Manzey 2010, pp. 390-391). Automation bias is the 

tendency to become overly reliant on the automated 

decision aid, at the expense of vigilant information seeking 

and processing (Mosier and Skitka 1996, p. 205). 

 

Automation bias has mainly been studied in aviation, 

navigation, and medical decision-making contexts. An 

everyday example of automation bias is the case of 

someone missing a turn because their GPS malfunctioned. 

Such a person might well have made the turn on their own 

if they hadn’t grown accustomed to the automated 

system. An example of the opposite type would be 

someone who took a wrong turn because their GPS 

malfunctioned, where they would have made the right 

turn if they hadn’t been using the GPS (Parasuraman and 

Manzey 2010, p. 391).  

 

In an insurance context, the automated decision aid is the 

insurance model. Automation bias would involve 

modellers and underwriters becoming overly reliant on 

models, at the expense of carefully considering and 

processing other relevant information. Our search of the 

literature found no published work discussing automation 

bias in an insurance context. 

 

Insofar as the major problem in biased error search is 

neglecting to search for errors in cases where estimates fit 

well enough with prior expectations, automation bias is 

likely to exacerbate the problem. For a more detailed 

discussion of problems from automation bias and 

potential solutions, see Armstrong et al. in this volume. 
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Section 3:   
Evidence of biased error search in insurance 
In June 2013, we interviewed modellers, underwriters, 

actuaries, and other employees at a major insurance 

company about a variety of topics related to the use of 

models in insurance. We found evidence of (i) the 

existence of strong prior expectations, (ii) a tendency to 

carefully look for errors in estimates that differed from 

prior expectations, and (iii) a much less significant 

tendency to scrutinize estimates that fit with prior 

expectations, all consistent with biased error search 

playing an important role in insurance.  

Regarding the existence of prior expectations, 

underwriters and modellers use models and data sets to 

help estimate the expected losses associated with writing 

insurance contracts. Underwriters use models and data 

sets as a starting point when deciding the price at which 

they are willing to write a contract, but they also rely on a 

variety of other factors including historical losses, specific 

knowledge about the exposures, personal intuition based 

on experience, relationships with brokers, knowledge of 

last year’s estimates, and general knowledge of the 

business environment. These factors create prior 

expectations. 

Regarding a tendency to search for errors in cases where 

an estimate seems wrong, interviewees estimated that 

when modellers are reviewing a submission from a broker, 

the estimate from a model will seem wrong around five to 

ten percent of the time, and this will lead to careful 

examination. Usually, this happens when the estimated 

loss differs substantially from the estimate from the 

previous year, especially in cases where the model has 

significantly changed. Error searches tend to focus on 

exposure data first, checking the performance of models 

on scenarios next, and sometimes talking with model 

vendors. There is a healthy mix of resolutions in talking 

with the model vendors.  

The most frequent resolution was learning that the model 

was being applied incorrectly, though bugs in the model 

are often found at this stage and modellers from the 

insurance company are often convinced that the 

surprising estimate of losses was, in fact, reasonable. 

However, this tendency to carefully search for errors is 

selective. We asked several people for examples of cases 

where (i) a model’s estimate fit the modeller’s or 

underwriter’s prior expectations, and (ii) the model was 

inspected for errors. No one could recall such a case, 

though everyone we asked could supply a case of the type 

discussed in the above paragraph. This suggests that 

models and data sets which fit with prior expectations are 

rarely carefully checked by employees like the modellers 

and underwriters we spoke with.The tendency to adjust 

estimates primarily when the produce inconvenient 

results—and not to modify them when the results are 

convenient—appears to be common in insurance. In their 

“Philosophy of Modelling,” Edwards and Hoosain (2012, 

pp. 59-60) appear to agree: 

“There is also the danger of using the opportunity 

of feedback adjustments to tweak the model in 

order [to] generate the results that one expects, 

or, even worse, that one wants (clearly not a 

danger confined to the feedback stage). As a 

general point, we seem to be more inclined to 

modify models where they generate inconvenient 

results.”  

Another way to react to a surprisingly high or low 

estimate—which doesn’t neatly fit into the concept of 

“error search” but is continuous with the phenomenon—is 

to find a different model with an estimate that fits better 

with prior expectations. For example, our interviewees told 

us that in 2011 the model vendor Risk Management 

Solutions (RMS) released estimates of losses for European 

windstorms that were substantially higher than what 

underwriters’ prior expectations. Many companies in the 

insurance industry reacted by using RMS 2011 or models 

from other vendors (which were closer to their prior 

expectations) in order to estimate losses from European 

windstorms. The reactions of the users of model vendors 

can affect the development of the models themselves; the 

following year, RMS released a model with loss estimates 

for European windstorms that were much closer to the 

estimates in RMS 2010. 



 
 

62 

Section 4:  Consequences of biased error 
search in insurance 
The material covered above illustrates what biased error 

search is and that it plays a role in insurance. But what 

are the consequences? This question is substantially less 

straightforward than it seems at first. This section explains 

why biased error search helps save time and find errors in 

cases where prior expectations are generally reliable, but 

leads to fewer errors found and misguided searches for 

errors in cases where expectations are less reliable. 

However, without further research (described in section 5 

and 6), it is impossible to tell how the costs and benefits 

compare. 

When expectations are about right, there are two types of 

cases to consider, each with a positive effect: 

1. If the estimated value seems about right and 

really is (as in Figure 5), biased error search 

implies limited scrutiny and acceptance of the 

estimate. That saves time because there isn’t an 

unnecessary search for mistakes. 

2. If the estimate value seems too high and really is 

too high (as in Figure 6), biased error search 

implies searching for errors that would cause an 

overestimate. That is an efficient way to bring the 

estimate back to where it should be. Something 

analogous happens if the estimate seems too low 

and really is too low. 

When expectations are wrong, there are two more types of 

cases to consider, each with a negative effect: 

3. If the estimate seems about right but the true 

value is surprisingly high or surprisingly low (as in 

Figure 7), then biased error search implies no 

search or a limited search for errors, which is 

likely to result in no errors found and an incorrect 

estimate.  

4. If the estimate is surprisingly high and the true 

value really is surprisingly high (as in Figure 8), 

then biased error search implies a search for 

errors which, if found, would decrease the 

estimate. In this case, it’s a search for the wrong 

type of errors. If there are often errors or simply 

judgment calls that could push the estimate 

down, the search for errors can be actively 

misleading. Something analogous happens if the 

estimate is surprisingly low and the true value 

really is surprisingly low. 

Cases 1-3 are relatively straightforward, but case 4 is not, 

so it deserves a more thorough explanation. Suppose 

there is a model estimating the expected loss on the 

portfolio for a whole class of business. Suppose that the 

model (and/or exposure data) has been updated recently, 

and the new model says there is more correlated risk than 

was previously expected. And suppose that, in fact, the 

new model is right. The new model’s estimate is likely to 

be seen as surprisingly high, and it will be scrutinized 

more carefully than it would be in a case where the new 

model gave an answer that was similar to the old model.  

The people scrutinizing the new model (and/or exposure 

data) will especially be on the lookout for ways in which 

the risk may have been overestimated. Ideally, such a 

search couldn’t be misleading. However, there a couple 

reasons that it could be. First, the estimate could have 

errors pushing in opposite directions that leave the 

estimate approximately correct. Searching only for errors 

of one kind could make the estimate worse, as even the 

best of model-based estimate is likely to have some 

imperfections. Second, the estimate could rely on inputs 

that rely on judgment calls. These judgment calls may be 

especially likely to be questioned in cases where they 

could be adjusted downward.  

The net effect considering all four types of cases is hard to 

discern from first principles, and we know of no relevant 

tests of how they trade off against each other. Therefore, 

it is unclear how much biased error search is hurting or 

helping, and whether surprisingly high and surprisingly 

low estimates are getting the right amount of scrutiny in 

comparison with estimates that come out roughly as 

expected.  
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Figure 5: Truth and estimate as expected 

 

Figure 6: Truth fits expectations, estimates don’t 

 

 

Figure 7: Estimates fit expectations, but truth doesn’t 

 

Figure 8: Estimates and truth contrary to expectations 
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Some important unknowns for determining the 
consequences of biased error search 
To weigh up all these consequences of biased error 

search, we need answers to the following questions: 

1. How do losses estimated by a model (adjusted or 

unadjusted) compare with estimated losses by 

underwriters and with real losses? 

This question seems important for assessing how much 

value is added by modellers and underwriters at different 

stages of the process. We did not discover whether this 

data is being systematically collected and compared, 

though our understanding is that underwriters writing a 

contract must write down estimated losses and that this 

information is included along with technical price, and 

reviewed during the risk review process.  

2. How often do models and data sets contain 

important, detectable errors in cases where 

model-estimated losses fit with prior 

expectations? 

This question can’t be answered with existing data 

because estimates which fit with prior expectations are 

rarely closely scrutinized. However, some evidence 

suggests that there may be errors in these cases. For 

example, when a new person builds a model from the 

ground up when an old model already exists, the models 

often disagree. 

This question is important for assessing the impact of 

rarely searching for errors in cases where model-based 

estimates fit with prior expectations, as our interviews 

suggest modellers and underwriters currently do. If 

models and data sets rarely contain important, detectable 

errors when they fit the experience and prior expectations 

of underwriters and modellers, there is comparatively little 

benefit in searching for errors in such cases. However, if 

they contain important, detectable errors frequently 

enough in such cases, then rarely checking for errors in 

such cases would be problematic. 

3. Are there generally significant errors in model-

based estimates that could be corrected, 

regardless of whether the estimate looks wrong? 

How often? 

4. Would someone looking for an error generally 

look for different things if they thought a model’s 

estimated losses were too high than they would if 

they thought the estimated losses were too low? 

E.g., would someone looking for errors check 

damageability, building coding, historical loss 

records, and so on either way, or would they 

check some if they thought it was too high and 

others if they thought it was too low? 

5. How do people searching for errors decide when 

to stop looking for errors? 

Better answers to these questions could be found by 

following the recommendations outlined in the section 

below. 

Tuned models, tuned expectations 
These last three questions are important together because 

they help indicate how much danger there is of tuning 

models and data sets to prior expectations during the 

error correction process. Suppose that there were 

significant correctable errors in most model-based 

estimates and suppose that someone looking for errors in 

a model-based estimate generally looks for errors in cases 

where the model doesn’t fit prior expectations, generally 

looks for errors that would bring the model in line with 

their prior expectations, and is unlikely to find errors that 

would go in the other direction unless they were purposely 

looking for them. Suppose further that people searching 

for errors had a strong tendency to keep looking for errors 

as long as model-based estimates didn’t fit their prior 

expectations, and tended to stop searching for errors once 

model-based estimates did fit their prior expectations. 

If all of these things were true, then biased error search 

would result in an error detection and correction process 

that substantially tuned the model-based estimates to fit 

with the prior expectations of modellers and underwriters. 

A similar process would unfold with the model users’ 

subjective judgments and expectations. Their experience 

would be that whenever their expectations differed 

significantly from the model’s, they then were able to find 

model errors that brought the model back in line and 

confirmed that their expectations were correct. This 

provides continued feedback seeming to confirm their 
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own expectations, and would cause them to develop high 

overconfidence in their estimates – more than the 

evidence warrants. This overconfidence would then be 

applied to the next time they need to decide whether and 

where to search for model errors.  

Section 5:    
How to assess the impact of biased error 
search and prevent the worst of it 
In previous sections, we covered what biased error search 

is, gave evidence that it happens in the insurance 

industry, discussed its possible costs and benefits, and 

identified key questions for getting a clearer picture of 

their importance and magnitudes. This section covers 

some methods for reducing the impact of biased error 

search and further illuminating its consequences. 

How could we mitigate biased error search 
driven by confirmation bias? 
The literature on mitigating confirmation bias suggests a 

number of methods which might reduce the impact of 

bias error search. For a summary, see the table below: 

Among these interventions, asking people who use models 

to offer reasons that their use of the model might be 

mistaken, and educating staff about cognitive biases seem 

stand out because they are simple to implement and test 

without changing the way people do their jobs. 

 
 

Table 1: Interventions with experimental evidence suggesting that they mitigate confirmation bias 

Intervention Who claims it works? 

Prime people for counterfactual thinking Kray and Galinsky 2003 

Ask people to consider alternate possibilities Lilienfeld et al. 2009 citing (e.g., Anderson, 1982; Anderson 
& Sechler, 1986; Hirt & Markman, 1995; Hoch, 1985; Lord, 
Lepper, & Preston, 1984), (Hoch, 1985; Koriat, Lichtenstein, 
& Fischhoff, 1980) 

Ask people to give reasons justifying their choices Wheeler and Arunachalam 2008 

Ask people to give reasons they might be wrong Koriat et al. 1980 

Present relevant evidence in a graphical layout Cook and Smallman 2008 

Talk to people with different opinions Schulz-Hardt et al. 2002 

Educate people about cognitive biases Lilienfeld et al. 2009 citing (Evans, Newstead, 
Allen, & Pollard, 1994; Kurtz & Garfield, 1978; Mynatt, 
Doherty, & Tweney, 1977; Newstead, Pollard, Evans, & Allen, 
1992; Tweney et al., 1980) 
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Ask people to give reasons they might be 
wrong 
In two experiments, Koriat et al 1980 gave paid volunteers 

tests of general knowledge. The authors describe the 

questions as follows:  

The questions covered a wide variety of topics 

including history, literature, geography, and 

nature. All had a two-alternative format. For 

example, “the Sabines were part of (a) ancient 

India or (b) ancient Rome.” (p. 109) 

Their abstract describes their methods and results as 

follows: 

“Exp I presented Ss with 2-alternative questions 

and required them to list reasons for and against 

each of the alternatives prior to choosing an 

answer and assessing the probability of its being 

correct. This procedure produced a marked 

improvement in the appropriateness of 

confidence judgments. Exp II simplified the 

manipulation by asking Ss first to choose an 

answer and then to list (a) 1 reason supporting 

that choice, (b) 1 reason contradicting it, or (c) 1 

reason supporting and 1 reason contradicting. 

Only the listing of contradicting reasons improved 

the appropriateness of confidence.” 

Asking for one reason a person might be wrong is a very 

simple procedure, and this makes it attractive to test in a 

context where confirmation bias may be problematic. 

Educate people about cognitive biases 
Lilienfeld et al. 2009 reviewed cognitive science research 

on how to mitigate confirmation bias. They reported:  

“In some but not all studies, basic education 

about specific cognitive biases (e.g., brief and 

nontechnical tutorials on confirmation bias) also 

decreases participants’ tendency to fall prey to 

certain errors, including confirmation bias (Evans, 

Newstead, Allen, & Pollard, 1994; Kurtz & 

Garfield, 1978; Mynatt, Doherty, & Tweney, 

1977; Newstead, Pollard, Evans, & Allen, 1992; 

Tweney et al., 1980).” 

However, they emphasized that this kind of solution was 

unlikely to be a cure-all: 

“Nevertheless, the question of whether 

instruction alone is sufficient to disabuse people 

of confirmation bias and related errors is 

controversial. Arkes (1981) maintained that 

psychoeducational methods by themselves are 

‘‘absolutely worthless’’ (p. 326), largely because 

people are typically oblivious to cognitive 

influences on their judgments. In contrast, others 

(e.g., Parmley, 2006) believe that 

psychoeducational programs may often be 

efficacious. For example, Willingham (2007) 

argued that although critical-thinking programs 

are, at best, modestly effective, the most 

successful methods teach participants 

‘‘metacognitive rules,’’ such as reminding them 

to consider alternative points of view in pertinent 

situations.” P. 393 

How could we limit automation bias’s role in 
biased error search? 
The two most helpful papers for addressing this question 

were literature reviews by Parasuraman and Manzey 2010 

and Goddard et al. 2012. They found a number of 

methods for limiting the role of automation bias:
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Table 2: Interventions with experimental evidence suggesting they mitigate automation bias 

Intervention Who claims it works? 

Decrease level of automation 
Parasuraman and Manzey 2010 citing (Crocoll & Coury, 1990; Rovira 
et al. 2007; Sarter & Schroeder, 2001) 

Display the decision aid’s context-
relative reliability 

Parasuraman and Manzey 2010 citing (McGuirl & Sarter, 2006); 
Goddard et al. (2012) citing (McGuirl & Sarter, 2006) 

Increase accountability 
Parasuraman and Manzey 2010 citing (Skitka, Mosier, and Burdick 
2000) 

Make the aid less reliable 
Parasuraman and Manzey 2010 citing (R. Parasuraman et al. 1993, 
May, Molloy, and Parasuraman 1993, and Bagheri and Jamieson 2004) 

Decrease task load 

Parasuraman and Manzey 2010 citing (Parasuraman et al. 1993); 
Goddard et al. 2012 citing (Grubb et al. 1995, Dixon and Wickens 
2006, and McFadden et al. 2004) 

Increase variation in reliability 

Parasuraman and Manzey 2010 citing (Parasuraman et al. 1993); 
Goddard et al. 2012 citing (R. Parasuraman et al. 1993 and R. 
Parasuraman et al. 1996) 

See a recent automation failure 
Parasuraman and Manzey 2010 citing (Lee and Moray 1992 and Lee 
and Moray 1994) 

See an automation failure early Parasuraman and Manzey 2010 citing (Molly and Parasuraman 1996) 

Decrease task complexity Goddard et al. 2012 citing (Bailey and Scerbo 2005) 

Decrease time constraints Goddard et al. 2012 citing (Sarter and Schroeder 2005) 

Increase understanding of how the 
decision aid works Goddard et al. 2012 citing (Dzindolet et al. 2003) 

Give information rather than a 
recommendation Goddard et al. 2012 citing (Sarter and Schroeder 2005) 

 

Among these interventions, increasing the accountability 

of people relying on models and including information 

about the robustness of insurance models alongside the 

models themselves stand out, (though the second may be 

more of a task for the model vendors than insurance 

companies). The first intervention stands out because it 

seems good from a common-sense perspective and could 

be done with only small changes to existing business 

processes. Implementing the second might be more work, 

but it also seems strong from a common sense 

perspective and the effect size was large in experimental 

studies. Regularly showing employees examples of failures 

of insurance models and training new staff with examples 

of insurance model failures also seem fairly promising 

ideas to test. Experimental results supporting these 

recommendations are reviewed in the following 

paragraphs. 

Increase accountability 
Skitka et al. 2000 got 181 undergraduates to try a flight 

simulator where they had various objectives and used a 

decision aid. Some of the undergraduates were told that 

they would have to explain their choices in the flight 

simulator to a professional and that their discussions 

would be recorded for in-depth review later (accountability 

conditions). Others were told no such thing (control 

condition). The students in the accountability conditions 

made fewer errors than the students in the control 

condition. The authors’ conclusion was that increasing 

accountability decreases automation bias. 

It’s common sense that holding people accountable for 

doing something generally makes them do it better, giving 

a reason to implement this change even without strong 

research proof. 

 This common sense perspective is generally upheld, 

though qualified and made more precise, in a series of 

research findings by Tetlock (e.g. Tetlock et al. 1989, 
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Lerner and Tetlock 1999).  Below, we offer some more 

detail about how this idea could be implemented to 

encourage more attentive use of models in insurance. 

Display the decision aid’s context-relative 
reliability  
McGuirl and Sarter 2006 put 30 instructor pilots through a 

flight simulator with a decision aid that was used to help 

the pilots detect icing events (which could cause stalls). 

The treatment group’s decision aid gave the pilots 

information about how accurate the decision aid was likely 

to be, whereas the control group’s decision aid did not. 

The treatment group was substantially less likely to stall. 

They stalled in 36% of cases, whereas the control group 

stalled in 64% of cases (McGuirl and Sarter 2006, p. 661). 

McGuirl and Sarter’s conclusion was that having 

information about a decision aid’s reliability decreases the 

effect of automation bias. 

As in the previous case, it’s common sense that people 

using a decision aid should be keeping in mind how 

reliable the decision aid is in the context in which they are 

using it, giving a reason to implement this change even 

without strong research proof. Including and prominently 

displaying this information in catastrophe models may be 

something for vendors to consider or something for 

insurance companies who use vendor models to consider 

adding to internal systems. 

Recommendations 
We recommend testing the following practices, comparing 

the results with a control group: 

1. Keep a record of all manual adjustments from 

initial settings on catastrophe models and 

exposure data. Require modellers to write a one-

sentence reason whenever they make a manual 

adjustment to a catastrophe model or the 

exposure data. Inform modellers that there will be 

random spot checks of adjustments and non-

adjustments. 

2. Require underwriters to write at least one 

sentence about why they might have 

overestimated the loss from accepting a contract, 

and once sentence about why they might have 

underestimated the loss. Pass this on to risk 

review, and inform the underwriters in advance 

that this will be done.  

3. Keep a record of model-estimated losses, both 

before and after making all manual adjustments, 

as well as the estimated losses from underwriters, 

and then periodically compare these with actual 

losses. Let modellers and underwriters know that 

this will be done. 

4. Randomly select some model-based estimates for 

detailed inspection in cases where nothing seems 

amiss in order to find base rates of error in such 

cases. 

5. More closely review cases where unadjusted 

models, adjusted models, and underwriter loss 

estimates differ substantially. 

6. Educate modellers, underwriters, and actuaries 

on how to recognize confirmation bias and avoid 

it. 

7. Design modelling software that displays an 

educated estimate of the model’s reliability for 

the case in which it is being used. 

These recommendations need not be accepted in an all-

or-nothing fashion. They could be tested on a case-by-case 

basis. Collecting this data (especially #4) would allow one 

to directly compare error detection rates under biased 

error search and unbiased error search, making it easier 

to distinguish between cases where biased error search is 

overall helpful and cases where it is overall harmful. #5 

could focus this research on the most important cases. 
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Conclusions and further research 
The key findings from this research are that: 

1. People using models in insurance search for 

errors and adjust models in ways that favor pre-

existing views of the risks being modelled. 

2. This pattern of biased error search and 

adjustment is driven by confirmation bias and 

automation bias. 

Some key remaining questions include: 

1. When is biased error search helpful and when is it 

harmful? While many psychologists and cognitive 

scientists see confirmation bias as pathological 

(e.g. Lilienfeld et al. 2009), others see it as an 

efficient way for imperfect people to quickly 

arrive at “good enough” answers (e.g. Gigerenzer 

and Goldstein 1996). It is unclear which 

perspective is most applicable to biased error 

search in insurance. 

2. Would the empirically-tested techniques for 

mitigating confirmation bias and automation bias 

help in insurance contexts? Little is known about 

the external validity of this research, and much of 

it focuses on undergraduates, challenges from 

other fields (such as aviation), and occurs in a 

controlled laboratory setting. 

These questions could be resolved by following the 

recommendations outlined in the previous section. 

Studying other fields that use imperfect models as an 

important input to decision-making, and learning about 

how they handle these challenges could potentially help 

make more effective use of models in insurance. These 

fields could include, but would not necessarily be limited 

to: weather forecasting, finance, trading players in 

professional sports (especially baseball), business 

forecasting, climate modelling, and macroeconomic 

modelling. 

There is also a substantial psychology and cognitive 

science literature comparing expert predictions with both 

(i) the predictions of simple statistical models, and (ii) the 

predictions experts make when they are allowed to see the 

predictions of simple statistical models and adjust them in 

ways they think are appropriate (e.g. Dawes and Corrigan 

1974). This literature could have something to say about 

how to improve the use of models in insurance. 

There is also a substantial literature on publication bias in 

science. Publication bias is the tendency of researchers 

and journal editors to favor positive or surprising scientific 

results, which can make the published literature fail to 

reflect the whole space of scientific results (including 

unpublished ones). Publication bias may be driven in part 

by a form of biased error search with motivated cognition, 

where scientists search for ways of analyzing a problem 

which would result in a more interesting or publishable 

research finding. A number of different techniques for 

mitigating publication bias have been recommended, and 

some of them could carry over to managing biased error 

search in insurance.  

Closer study of these fields, with an eye to applications for 

biased error search in insurance, could shed light on the 

consequences of biased error search or generate new 

hypotheses for how to reduce it. 
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