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Abstract

The Planck radiation law can be viewed as a probability distribution of photon energies. This
resource note is about its properties as a probability distribution. The distribution is intimately
linked to many of the most famous special functions.

1 Background

For blackbody radiation the rate of emission of energy per unit area per unit time (i.e. the exitance)
per unit frequency interval is given by Planck’s radiation law:

2nh V3
B (V , T) = C—2 m (1)
This can be viewed as a probability distribution of photon frequencies (or, equivalently after a
rescaling, energies, or, after inversion, wavelengths).

Physically, the Planck distribution is singled out as being the maximum entropy distribution
of energies of a 3D gas of photons at thermal equilibrium. In D space dimensions, the exponent in
the numerator of equation 1 becomes D rather than 3. [CC05]. These (and further) generalisations
of the distribution are discussed in [NKO06, Pak21], where the distribution at hand becomes a
member of a larger family of distributions.

It seems likely that this probability distribution is not more well known as a probability
distribution (rather than as a physical quantity) due to the need of representing its properties
using special functions. More recently computer algebra systems have made manipulating it
more easy [Stel2].

2 Density function
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Figure 1: The PDF, CDF, mode, median and mean of the Planck distribution for 2 = 1.



102 g

a=1 |4
a=3 |
a=10 | 3
a=30 | ]

1072 107! 10° 10’ 102
X

106

Figure 2: The PDFs of the Planck distribution for a = 1,3, 10 and 30 in a log-log diagram. The
maxima are connected by a line representing the rescaling relation 3.

Normalizing equation 1 into a probability distribution using?
o 3 4
/ LA
0o e -1 15a*

15a* 3
f(x;a) = e 2)

we get a PDF

where a = h/kgT is the temperature-dependent shape and location parameter. 2 — 0 corresponds
to infinite temperature, a — oo zero temperature.

2.1 Rescaling

The different temperature distributions are identical under a rescaling of x and the distribution.

f(x;a) =af(ax;1) 3)

2.2 Tails

As can be seen in figure 2, f(x;a) ~ x2/a as x — 0 (the Rayleigh-Jeans law). As x — oo it declines
as f(x;a) ~ e (Wien's approximation).

3 Mode
The mode is given by f’(x;a) = 0 or

e™(ax-3)+3=0
for x > 0. This has the solution
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where W is the Lambert W function. This is Wien’s displacement law in physics.

1This is due to the beautiful identity
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where B,, are the Bernoulli numbers.



4 Cumulative distribution function

The CDF can be found by integration by parts into a series of polylog functions [Ste12].
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Note that the different terms generate complex values that cancel; however, for practical numeric
work integral quadrature is likely more numerically stable.

5 Median

The median, F(x,,) = 1/2, does not appear to have any closed form expression. Numerically is is
~ 3.503/a.

6 Mean

The mean of the distribution is
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The ratio between mean and mode is hence constant: /x40 = (W (=3/e3)+3)/360C(5) ~ 1.3583
(the same constant ratio property is true for the median, located between them).

7 Variance

The variance becomes
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8 Skewness and higher order moments
The skewness can be expressed as
E[X3] - 3uo? — u?
s = -t (®)
where L7T(7)  111.7983
E[X?] = N 9
X Zaras ~ ®
This gives p3 ~ 8.2293/a3.
Higher order (raw) moments can be calculated similarly,
L 3+n
E[X"] = / LM C4+nI(4+n) (10)
o e —1 C(4)T(4)an+1



8.1 Moment-generating function

The moment generating function is
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This can be converted into a polygamma function using the definition?
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Hence,
M(t) = gw‘”u +t/a). (13)
9 Sums

The sum of two Planck distributed variates is not Planck distributed. The low-frequency tail has
a higher exponent than the vanilla Planck distribution.

Performing a convolution to find fxiy(z) = fOZ f(x)f(z — x)dx produces the non-illuminating
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As k — oo independent variates are added, the central limit theorem makes their sum converge
(since they have finite variance) to — N(kp, ko?). Since the third moment E[X3] = p is finite,

by the Berry—-Esseen theorem the difference between the distribution of the sample sums and the
relevant Gaussian is bounded by

Cp
a3Vk

(where C < 0.4748 [Shel1]). This gives a bound here scaling as 0.4684/ vk, independent of a.

sup [Fi(x) - O(x)] <

(15)

10 Entropy

The physical entropy of the distribution is described and analysed by Alfonso Delgado-Bonal in
[DB17]. See also [ASV16] for a discussion of the physical meaning of the entropy carried by each
photon.

The differential entropy H = — fooo f(x)log(f(x))dx does not have a closed form expression. It
is a growing function of a.

11 Sampling
Sampling from the distribution f(x, 1) has been described by Charles Barnett and Eugene Canfield

in [BC70], using two methods.
First, they described a series expansion method using
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where 7, = 90/t*n* can be viewed as a probability of selecting a sample from the gamma distri-
bution function f,,(x) = n*x3e7"% /6; the full distribution is a weighted mix of these distributions.

2Another approach is to convert the fraction into a geometric series expansion, reorder the sum and integral, and
arriving at a Hurwitz zeta function that can be converted to a polygamma since it has an integer exponent.



Second, they described a rejection technique where the distribution is bounded by h(x) =
6.25(15/1t*)x /(1 — e™)(x + e 7). In both cases it is necessary to sample from random distributions
of the form f,(x).

Alice Graf Brolund and Rebecca Persson used a far simpler (but inexact) rejection sampling
using a uniform distribution bounded by a multiple of the peak frequency [GBP18].

Generally the series expansion method is fast and effective.
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