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Abstract

The Planck radiation law can be viewed as a probability distribution of photon energies. This
resource note is about its properties as a probability distribution. The distribution is intimately
linked to many of the most famous special functions.

1 Background
For blackbody radiation the rate of emission of energy per unit area per unit time (i.e. the exitance)
per unit frequency interval is given by Planck’s radiation law:

𝐵(�, 𝑇) = 2𝜋ℎ
𝑐2

�3

𝑒 ℎ�/𝑘𝐵𝑇 − 1
(1)

This can be viewed as a probability distribution of photon frequencies (or, equivalently after a
rescaling, energies, or, after inversion, wavelengths).

Physically, the Planck distribution is singled out as being the maximum entropy distribution
of energies of a 3D gas of photons at thermal equilibrium. In 𝐷 space dimensions, the exponent in
the numerator of equation 1 becomes 𝐷 rather than 3. [CC05]. These (and further) generalisations
of the distribution are discussed in [NK06, Pak21], where the distribution at hand becomes a
member of a larger family of distributions.

It seems likely that this probability distribution is not more well known as a probability
distribution (rather than as a physical quantity) due to the need of representing its properties
using special functions. More recently computer algebra systems have made manipulating it
more easy [Ste12].

2 Density function
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Figure 1: The PDF, CDF, mode, median and mean of the Planck distribution for 𝑎 = 1.
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Figure 2: The PDFs of the Planck distribution for 𝑎 = 1, 3, 10 and 30 in a log-log diagram. The
maxima are connected by a line representing the rescaling relation 3.

Normalizing equation 1 into a probability distribution using1∫ ∞

0

�3

𝑒 𝑎� − 1 𝑑� =
𝜋4

15𝑎4

we get a PDF

𝑓 (𝑥; 𝑎) = 15𝑎4

𝜋4
𝑥3

𝑒 𝑎𝑥 − 1 (2)

where 𝑎 = ℎ/𝑘𝐵𝑇 is the temperature-dependent shape and location parameter. 𝑎 → 0 corresponds
to infinite temperature, 𝑎 → ∞ zero temperature.

2.1 Rescaling
The different temperature distributions are identical under a rescaling of 𝑥 and the distribution.

𝑓 (𝑥; 𝑎) = 𝑎 𝑓 (𝑎𝑥; 1) (3)

2.2 Tails
As can be seen in figure 2, 𝑓 (𝑥; 𝑎) ∼ 𝑥2/𝑎 as 𝑥 → 0 (the Rayleigh–Jeans law). As 𝑥 → ∞ it declines
as 𝑓 (𝑥; 𝑎) ∼ 𝑒−𝑎𝑥 (Wien’s approximation).

3 Mode
The mode is given by 𝑓 ′(𝑥; 𝑎) = 0 or

𝑒 𝑎𝑥(𝑎𝑥 − 3) + 3 = 0

for 𝑥 > 0. This has the solution

𝑥𝑚𝑜𝑑𝑒 =
𝑊(−3/𝑒3) + 3

𝑎
≈ 2.82144

𝑎
(4)

where 𝑊 is the Lambert W function. This is Wien’s displacement law in physics.

1This is due to the beautiful identity ∫ ∞

0

𝑥𝑠−1

𝑒𝑎𝑥 − 1 𝑑𝑥 =
�(𝑠)Γ(𝑠)

𝑎𝑠

and that the values of �(𝑥) for even positive integers 2𝑛 are

�(2𝑛) = (−1)1+𝑛 (2𝜋)
2𝑛𝐵2𝑛

2(2𝑛)!
where 𝐵𝑛 are the Bernoulli numbers.
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4 Cumulative distribution function
The CDF can be found by integration by parts into a series of polylog functions [Ste12].

𝐹(𝑥) = 15𝑎4

𝜋4

∫ 𝑥

0

𝑡3

𝑒 𝑎𝑡 − 1
𝑑𝑥 =

15𝑎4

𝜋4

[
360 Li4 (e𝑎𝑥) − 360𝑎𝑥 Li3 (e𝑎𝑥) + 180𝑎2𝑥2 Li2 (e𝑎𝑥) + 60𝑎3𝑥3 ln (1 − e𝑎𝑥) − 15𝑎4𝑥4 − 4𝜋4

60𝑎4

]
=

1
𝜋4

[
90 Li4 (e𝑎𝑥) − 90 Li3 (e𝑎𝑥) + 45𝑎2𝑥2 Li2 (e𝑎𝑥) + 15𝑎3𝑥3 ln (1 − e𝑎𝑥) − (15/4)𝑎4𝑥4 − 𝜋4] (5)

Note that the different terms generate complex values that cancel; however, for practical numeric
work integral quadrature is likely more numerically stable.

5 Median
The median, 𝐹(𝑥𝑚) = 1/2, does not appear to have any closed form expression. Numerically is is
≈ 3.503/𝑎.

6 Mean
The mean of the distribution is

� = 𝐸[𝑋] =
∫ ∞

0
𝑥 𝑓 (𝑥; 𝑎)𝑑𝑥 =

�(5)Γ(5)
�(4)Γ(4)𝑎 =

360�(5)
𝜋4𝑎

≈ 3.8322
𝑎

. (6)

The ratio between mean and mode is hence constant: �/𝑥𝑚𝑜𝑑𝑒 = 𝜋4(𝑊(−3/𝑒3)+3)/360�(5) ≈ 1.3583
(the same constant ratio property is true for the median, located between them).

7 Variance
The variance becomes

𝜎2 = 𝐸[𝑋2] − 𝐸[𝑋]2 =
�(6)Γ(6)
�(4)Γ(4)𝑎2 −

(
�(5)Γ(5)
�(4)Γ(4)𝑎

)2
=

15𝑎4

𝜋4
8𝜋6

63𝑎6 − 3602�(5)2
𝜋8𝑎2 =

(
40𝜋2

21 − 3602�(5)2
𝜋8

)
1
𝑎2 ≈ 4.1133

𝑎2 (7)

8 Skewness and higher order moments
The skewness can be expressed as

�3 =
𝐸[𝑋3] − 3�𝜎2 − �3

𝜎3 (8)

where
𝐸[𝑋3] = �(7)Γ(7)

�(4)Γ(4)𝑎3 ≈ 111.7983
𝑎3 . (9)

This gives �3 ≈ 8.2293/𝑎3.
Higher order (raw) moments can be calculated similarly,

𝐸[𝑋𝑛] =
∫ ∞

0

𝑥3+𝑛

𝑒 𝑎𝑥 − 1𝑑𝑥 =
�(4 + 𝑛)Γ(4 + 𝑛)
�(4)Γ(4)𝑎𝑛+1 . (10)
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8.1 Moment-generating function
The moment generating function is

𝑀(𝑡) = 𝐸[𝑒 𝑡𝑋] = 15𝑎4

𝜋4

∫ ∞

0
𝑥3 𝑒 𝑡𝑥

𝑒 𝑎𝑥 − 1𝑑𝑥. (11)

This can be converted into a polygamma function using the definition2

𝜓(3)(𝑧) =
∫ ∞

0

𝑥3𝑒−𝑧𝑡

1 − 𝑒−𝑥
𝑑𝑥. (12)

Hence,
𝑀(𝑡) = 15

𝜋4𝜓
(3)(1 + 𝑡/𝑎). (13)

9 Sums
The sum of two Planck distributed variates is not Planck distributed. The low-frequency tail has
a higher exponent than the vanilla Planck distribution.

Performing a convolution to find 𝑓𝑋+𝑌(𝑧) =
∫ 𝑧

0 𝑓 (𝑥) 𝑓 (𝑧 − 𝑥)𝑑𝑥 produces the non-illuminating

𝑓𝑋+𝑌(𝑧) =
1350𝑎

𝜋8(𝑒 𝑎𝑧 − 1) [120 Li7 (e𝑎𝑧) − 60𝑎𝑧 Li6 (e𝑎𝑧) + 12𝑎2𝑧2 Li5 (e𝑎𝑧) − 𝑎3𝑧3 Li4 (e𝑎𝑧)

+ 120 Li7 (e−𝑎𝑧) + 60𝑎𝑧 Li6 (e−𝑎𝑧) + 12𝑎2𝑧2 Li5 (e−𝑎𝑧) + 𝑎3𝑧3 Li4 (e−𝑎𝑧)
− 24 � (5) 𝑎2𝑧2 − 240 � (7)] (14)

As 𝑘 → ∞ independent variates are added, the central limit theorem makes their sum converge
(since they have finite variance) to → 𝑁(𝑘�, 𝑘𝜎2). Since the third moment 𝐸[𝑋3] = 𝜌 is finite,
by the Berry–Esseen theorem the difference between the distribution of the sample sums and the
relevant Gaussian is bounded by

sup |𝐹𝑘(𝑥) −Φ(𝑥)| ≤
𝐶𝜌

𝜎3
√
𝑘

(15)

(where 𝐶 < 0.4748 [She11]). This gives a bound here scaling as 0.4684/
√
𝑘, independent of 𝑎.

10 Entropy
The physical entropy of the distribution is described and analysed by Alfonso Delgado-Bonal in
[DB17]. See also [ASV16] for a discussion of the physical meaning of the entropy carried by each
photon.

The differential entropy 𝐻 = −
∫ ∞

0 𝑓 (𝑥) log( 𝑓 (𝑥))𝑑𝑥 does not have a closed form expression. It
is a growing function of 𝑎.

11 Sampling
Sampling from the distribution 𝑓 (𝑥, 1) has been described by Charles Barnett and Eugene Canfield
in [BC70], using two methods.

First, they described a series expansion method using

𝑓 (𝑥) = 15
𝜋4 𝑥

2𝑒−𝑥
∞∑
𝑘=0

𝑒−𝑘𝑥 =

∞∑
𝑛=1

(
90

𝜋4𝑛4

) (
𝑛4

6 𝑥3𝑒−𝑛𝑥
)
=

∞∑
𝑛=1

𝜋𝑛 𝑓𝑛(𝑥) (16)

where 𝜋𝑛 = 90/𝜋4𝑛4 can be viewed as a probability of selecting a sample from the gamma distri-
bution function 𝑓𝑛(𝑥) = 𝑛4𝑥3𝑒−𝑛𝑥/6; the full distribution is a weighted mix of these distributions.

2Another approach is to convert the fraction into a geometric series expansion, reorder the sum and integral, and
arriving at a Hurwitz zeta function that can be converted to a polygamma since it has an integer exponent.
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Second, they described a rejection technique where the distribution is bounded by ℎ(𝑥) =

6.25(15/𝜋4)𝑥/(1− 𝑒−𝑥)(𝑥 + 𝑒−𝑥). In both cases it is necessary to sample from random distributions
of the form 𝑓𝑛(𝑥).

Alice Graf Brolund and Rebecca Persson used a far simpler (but inexact) rejection sampling
using a uniform distribution bounded by a multiple of the peak frequency [GBP18].

Generally the series expansion method is fast and effective.
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