Telescoping

Wednesday August 10 1960

Robert lit his pipe while William meticulously set the coordinates from the computer printout. “Want to bet?”

William did not look up from fine-tuning the dials and re-checking the flickering oscilloscope screen. “Five dollars that we get something.”

“’Something’ is not going to be enough to make Edward or the General happy. They want the future on film.”

“If we get more delays we can always just step out with a camera. We will be in the future already.”

“Yeah, and fired.”

“I doubt it. This is just a blue-sky project Ed had to try because John and Richard’s hare-brained one-electron idea caught the eye of the General. It will be like the nuclear mothball again. There, done. You can start it.”

Robert put the pipe in the ashtray and walked over to the Contraption controls. He noted down the time and settings in the log, then pressed the button. “Here we go.” The Contraption hummed for a second, the cameras clicked. “OK, you bet we got something. You develop the film.”

 

“We got something!” William was exuberant enough to have forgotten the five dollars. He put down the still moist prints on Robert’s desk. Four black squares. He thrust a magnifying glass into Robert’s hands and pointed at a corner. “Recognize it?”

It took Robert a few seconds to figure out what he was looking at. First he thought there was nothing there but noise, then eight barely visible dots became a familiar shape: Orion. He was seeing a night sky. In a photo taken inside a basement lab. During the day.

“Well… that is really something.”

 

Tuesday August 16 1960

The next attempt was far more meticulous. William had copied the settings from the previous attempt, changed them slightly in the hope of a different angle, and had Raymond re-check it all on the computer despite the cost. This time they developed the film together. As the seal of the United States of America began to develop on the film they both simultaneously turned to each other.

“Am I losing my mind?”

“That would make two of us. Look, there is text there. Some kind of plaque…”

The letters gradually filled in. “THIS PLAQUE COMMEMORATES THE FIRST SUCCESSFUL TRANSCHRONOLOGICAL OBSERVATION August 16 1960 to July 12 2054.” Below was more blurry text.

“Darn, the date is way off…”

“What do you mean? That is today’s date.”

“The other one. Theory said it should be a month in the future.”

“Idiot! We just got a message from the goddamn future! They put a plaque. In space. For us.”

 

Wednesday 14 December 1960

The General was beaming. “Gentlemen, you have done your country a great service. The geographic coordinates on Plaque #2 contained excellent intel. I am not at liberty to say what we found over there in Russia, but this project has already paid off far beyond expectation. You are going to get medals for this.” He paused and added in a lower voice: “I am relieved. I can now go to my grave knowing that the United States is still kicking communist butt 90 years in the future.”

One of the general’s aides later asked Robert: “There is something I do not understand, sir. How did the people in the future know where to put the plaques?”

Robert smiled. “That bothered us too for a while. Then we realized that it was the paperwork that told them. You guys have forced us to document everything. Just saying, it is a huge bother. But that also meant that every setting is written down and archived. Future people with the right clearances can just look up where we looked.”

“And then go into space and place a plaque?”

“Yes. Future America is clearly spacefaring. The most recent plaques also contain coordinate settings for the next one, in addition to the intel.”

He did not mention the mishap. When they entered the coordinates for Plaque #4 given on Plaque #3, William had made a mistake – understandable, since the photo was blurry – and they photographed the wrong spacetime spot. Except that Plaque #4 was there. It took them a while to realize that what mattered was what settings they entered into the archive, not what the plaque said.

“They knew where we would look.” Robert had said with wonder.

“Why did they put in different coordinates on #3 then? We could just set random coordinates and they will put a plaque there.”

“Have a heart. I assume that would force them to run around the entire solar system putting plaques in place. Theory says the given coordinates are roughly in Earth’s vicinity – more convenient for our hard-working future astronauts.”

“You know, we should try putting the wrong settings into the archive.”

“You do that if the next plaque is a dud.”

 

Friday 20 January 1961

Still, something about the pattern bothered Robert. The plaques contained useful information, including how to make a better camera and electronics. The General was delighted, obviously thinking of spy satellites not dependent on film cannisters. But there was not much information about the world: if he had been sending information back to 1866, wouldn’t he have included some modern news clippings, maybe a warning about stopping that Marx guy?

Suppose things did not go well in the future. The successors of that shoe-banging Khrushchev somehow won and instituted their global dictatorship. They would pore over the remaining research of the formerly free world, having their minions squeeze every creative idea out the archives. Including the coordinates for the project. Then they could easily fake messages from a future America to fool his present, maybe even laying the groundwork for their success…

William was surprisingly tricky to convince. Robert had assumed he would be willing to help with the scheme just because it was against the rules, but he had been at least partially taken in by the breath-taking glory of the project and the prospect of his own future career. Still, William was William and could not resist a technical challenge. Setting up an illicit calculation on the computer disguised as an abortive run with a faulty set of punch cards was just his kind of thing. He had always loved cloak-and-dagger stuff. Robert made use of the planned switch to the new cameras to make the disappearance of one roll of film easy to overlook. The security guards knew both of them worked on ungodly hours.

“Want to bet?” William asked.

“Bet what? That we will see a hammer and sickle across the globe?”

“Something simpler: that there will be a plaque saying ‘I see you peeping!’.”

Robert shivered. “No thanks. I just want to be reassured.”

“It is a shame we can’t get better numerical resolution; if we are lucky we will just see Earth. Imagine if we could get enough decimal places to put the viewport above Washington DC.”

The photo was beautiful. Black space, and slightly off-centre there was a blue and white marble. Robert realized that they were the first people ever to see the entire planet from this distance. Maybe in a decade or so, a man on the moon would actually see it like that. But the planet looked fine. Was there maybe glints of something in orbit?

“Glad I did not make the bet with you. No plaque.”

“The operational security of the future leaves a bit to be desired.”

“…that is actually a good answer.”

“What?”

“Imagine you are running Future America, and have a way of telling the past about important things. Like whatever was in Russia, or whatever is in those encrypted sequences on Plaque #9. Great. But Past America can peek at you, and they don’t have all the counterintelligence gadgets and tricks you do. So if they peek at something sensitive – say the future plans for a super H-bomb – then the Past Commies might steal it from you.”

“So the plaques are only giving us what we need, or is safe if there are spies in the project.”

“Future America might even do a mole-hunt this way… But more importantly, you would not want Past America to watch you too freely since that might leak information to not just our adversaries or the adversaries of Future America, but maybe mid-future adversaries too.”

“You are reading too many spy novels.”

“Maybe. But I think we should not try peeking too much. Even if we know we are trustworthy, I have no doubt there are some sticklers in the project – now or in the future – who are paranoid.”

“More paranoid than us? Impossible. But yes.”

With regret Robert burned the photo later that night.

 

February 1962

As the project continued its momentum snowballed and it became ever harder to survey. Manpower was added. Other useful information was sent back – theory, technology, economics, forecasts. All benign. More and more was encrypted. Robert surmised that somebody simply put the encryption keys in the archive and let the future send things back securely to the right recipients.

His own job was increasingly to run the work on building a more efficient “Conduit”. The Contraption would retire in favour of an all-electronic version, all integrated circuits and rapid information flow. It would remove the need for future astronauts to precisely place plaques around the solar system: the future could send information as easily as using ComLogNet teletype terminals.

William was enthusiastically helping the engineers implement the new devices. He seemed almost giddy with energy as new tricks arrived weekly and wonders emerged from the workshop. A better camera? Hah, the new computers were lightyears ahead of anything anybody else had.

So why did Robert feel like he was being fooled?

 

Wednesday 28 February 1962

In a way this was a farewell to the Contraption around which his life had circulated the past few years: tomorrow the Conduit would take over upstairs.

Robert quietly entered the coordinates into the controls. This time he had done most of the work himself: he could run jobs on the new mainframe and the improved algorithms Theory had worked out made a huge difference.

It was also perhaps his last chance to actually do things himself. He had found himself increasingly insulated as a manager – encapsulated by subordinates, regulations, and schedules. The last time he had held a soldering iron was months ago. He relished the muggy red warmth of the darkroom as he developed the photos.

The angles were tilted, but the photos were more unexpected than he had anticipated. One showed what he thought was in the DC region but the whole area was an empty swampland dotted with overgrown ruins. New York was shrouded in a thunderstorm, but he could make out glowing skyscrapers miles high shedding von Kármán vortices in the hurricane strength winds. One photo showed a gigantic structure near the horizon that must have been a hundred kilometres tall, surmounted by an aurora. This was not a communist utopia. Nor was it the United States in any shape or form. It was not a radioactive wasteland – he was pretty sure at least one photo showed some kind of working rail line. This was an alien world.

When William put his hand on his shoulder Robert nearly screamed.

“Anything interesting?”

Wordlessly he showed the photos to William, who nodded. “Thought so.”

“What do you mean?”

“When do you think this project will end?”

Robert gave it some thought. “I assume it will run as long as it is useful.”

“And then what? It is not like we would pack up the Conduit and put it all in archival storage.”

“Of course not. It is tremendously useful.”

“Future America still has the project. They are no doubt getting intel from further down the line. From Future Future America.”

Robert saw it. A telescoping series of Conduits shipping choice information from further into the future to the present. Presents. Some of which would be sending it further back. And at the futuremost end of the series…

“I read a book where they discussed progress, and the author suggested that all of history is speeding up towards some super-future. The Contraption and Conduit allows the super-future to come here.”

“It does not look like there are any people in the super-future.”

“We have been evolving for millions of years, slowly. What if we could just cut to the chase?”

“Humanity ending up like that?” He gestured towards Thunder New York.

“I think that is all computers. Maybe electronic brains are the inhabitants of the future.”

“We must stop it! This is worse than commies. Russians are at least human. We must prevent the Conduit…”

William smiled broadly. “That won’t happen. If you blew up the Conduit, don’t you think there would be a report? A report archived for the future? And if you were Future America, you would probably send back an encrypted message addressed to the right person saying ‘Talk Robert out of doing something stupid tonight’? Even better, a world where someone gets your head screwed on straight, reports accurately about it, and the future sends back a warning to the person is totally consistent.”

Robert stepped away from William in horror. The red gloom of the darkroom made him look monstrous. “You are working for them!”

“Call it freelancing. I get useful tips, I do my part, things turn out as they should. I expect a nice life. But there is more to it than that, Robert. I believe in moral progress. I think those things in your photos probably know better than we do – yes, they are probably more alien than little green men from Mars, but they have literally eons of science, philosophy and whatever comes after that.”

“Mice.”

“Mice?”

“MICE: Money, Ideology, Coercion, Ego. The formula for recruiting intelligence assets. They got you with all but the coercion part.”

“They did not have to. History, or rather physical determinism, coerces us. Or, ‘you can’t fight fate’.”

“I’m doing this to protect free will! Against the Nazis. The commies! Your philosophers!”

“Funny way you are protecting it. You join this organisation, you allow yourself to become a cog in the machine, feel terribly guilty about your little experiments. No, Robert, you are protecting your way of life. You are protecting normality. You could just as well have been in Moscow right now working to protect socialism.”

“Enough! I am going to stop the Conduit!”

William held up a five dollar bill. “Want to bet?”

 

A crazy futurist writes about crazy futurists

Arjen the doomsayerWarren Ellis’ Normal is a little story about the problem of being serious about the future.

As I often point out, most people in the futures game are basically in the entertainment industry: telling wonderful or frightening stories that allow us to feel part of a bigger sweep of history, reflect a bit, and then return to the present with the reassurance that we have some foresight. Relatively little future studies is about finding decision-relevant insights and then acting on it. It exists, but it is not the bulk of future-oriented people. Taking the future seriously might require colliding with your society as you try to tell it it is going the wrong way. Worse, the conclusions might tell you that your own values and goals are wrong.

Normal takes place at a sanatorium for mad futurists in the wilds of Oregon. The idea is that if you spend too much time thinking too seriously about the big and horrifying things in the future mental illness sets in. So when futurists have nervous breakdowns they get sent by their sponsors to Normal to recover. They are useful, smart, and dedicated people but since the problems they deal with are so strange their conditions are equally unusual. The protagonist arrives just in time to encounter a bizarre locked room mystery – exactly the worst kind of thing for a place like Normal with many smart and fragile minds – driving him to investigate what is going on.

As somebody working with the future, I think the caricatures of these futurists (or rather their ideas) are spot on. There are the urbanists, the singularitarians, the neoreactionaries, the drone spooks, and the invented professional divisions. Of course, here they are mad in a way that doesn’t allow them to function in society which softballs the views: singletons and Molochs are serious real ideas that should make your stomach lurch.

The real people I know who take the future seriously are overall pretty sane. I remember a documentary filmmaker at a recent existential risk conference mildly complaining that people where so cheerful and well-adapted: doubtless some darkness and despair would have made a far more compelling imagery than chummy academics trying to salvage the bioweapons convention. Even the people involved in developing the Mutually Assured Destruction doctrine seem to have been pretty healthy. People who go off on the deep end tend to do it not because of The Future but because of more normal psychological fault lines. Maybe we are not taking the future seriously enough, but I suspect it is more a case of an illusion of control: we know we are at least doing something.

This book convinced me that I need to seriously start working on my own book project, the “glass is half full” book. Much of our research at FHI seems to be relentlessly gloomy: existential risk, AI risk, all sorts of unsettling changes to the human condition that might slurp us down into a valueless attractor asymptoting towards the end of time. But that is only part of it: there are potential futures so bright that we do not just need sunshades, but we have problems with even managing the positive magnitude in an intellectually useful way. The reason we work on existential risk is that we (1) think there is enormous positive potential value at stake, and (2) we think actions can meaningfully improve chances. That is no pessimism, quite the opposite. I can imagine Ellis or one of his characters skeptically looking at me across the table at Normal and accusing me of solutionism and/or a manic episode. Fine. I should lay out my case in due time, with enough logos, ethos and pathos to convince them (Muhahaha!).

I think the fundamental horror at the core of Normal – and yes, I regard this more as a horror story than a techno-thriller or satire – is the belief that The Future is (1) pretty horrifying and (2) unstoppable. I think this is a great conceit for a story and a sometimes necessary intellectual tonic to consider. But it is bad advice for how to live a functioning life or actually make a saner future.

 

The Annihilation Score as Satirical Sociology

Violin storeToday I read The Annihilation Score by Charles Stross during a flight. It is the sixth Laundry novel, and in many ways the weakest. But it might be the intellectually and satirically best.

The Laundry novels are a mix of horror, spy story, geekiness, and satire. This is both a reader-winning combination (transitions from one side of the mixture to another can provide intense contrast, and Stross can give readers a bit of everything) and a balancing problem: each story needs to maintain the right mixture, and the readers often have their own favourite ratios. The Annihilation Score goes further in the direction of satire, reducing the horror and geekiness fairly significantly. This no doubt makes many Laundry fans unhappy. Me too, to some extent: there is nothing more delightful than noticing wordplay based on obscure hermetica and computer science, or the distinctly unsettling implications of thinking through some of the metaphysical assumptions of the setting. However, I think Stross hit on something different in this novel: an important argument disguised as satire.

On the surface the novel suffers from bad pacing: the bulk of it is about management. Not intense action, but rather the issue of how to set up an office, from personnel management to furniture to keeping the funding body happy despite contradictory goals. There is plenty of agency-spotting, with numerous acronymical organisations criss-crossing the story with their interleaved agendas. And finally, in the last fifth, a climactic battle. Typically Laundry novels spend a lot of times establishing a mood and tension for a relatively brief finale where they get unleashed. The Annihilation Score takes this even further, but at least I did not feel much of a build-up. In fact, despite the pressure on the main character she comes across as almost a Westminster Mary Sue: she persists and succeeds at nearly everything, from turning what ought to be a social nightmare into a cozy core team, to handling unseen budgetary constraints.

However, on a deeper level this is not a horror story about inhuman entities from other dimensions threatening to invade our world and their misguided human servants. This is a horror story about the inhuman entity inhabiting Whitehall: government.

Taking jabs at the absurdity, stupidity and inhumanity of bureaucracy has been a staple in the Laundry books. What makes the Annihilation Score stand out is that it actually has a fairly well thought out argument and exposition of why. The basics are familiar from the earlier novels: the iron law of bureaucracy (framed here as the emergent instrumental goal of organisations to preserve themselves), Parkinson’s law, the Snafu principle, empire building, not invented here, in-group out-group dynamics, Something Must Be Done, and so on. The novel does a sociological dive into the internal culture of the subset of bureaucracy dealing with policing. Here there exists a strong ethos about what purpose it actually has, which both serves to recruit and advance people with a compatible mindset and actually maintain some mission focus. Presumably because it would be very noticeable if the police force began too drift too far from its necessary function; compare this with how some branches of academia are kept honest by constant interaction with an unyielding real world, and others diffuse into obscure absurdity since there are only social forces constraining them. But even when a purpose has an apparently clear meaning it can get subtly (or not so subtly) twisted. This is especially true at the top, where the constraints of external practical reality are weakest.

Stross examines the case where bureaucracy recognizes it has an out-of-context problem. Something important yet unknown is intruding, and clearly something must be done to handle it. The problem is of course that following the politician’s syllogism means that whatever fast and decisive action is taken is not going to be based on good knowledge. Worse, if the organisation is centred on dealing with something Very Important like national security it will hence be (1) extremely motivated to do it, (2) discount signals from unimportant (as described by its own value system) organisations or sources. A not so subtle analogy to the Annihilation Score is government handling of many emerging technologies such as encryption. Internal expertise is lacking not just on the technology itself and its full implications, but there is also a lack of expertise in judging the consequences of different actions and expertise in recognizing this kind of expertise.

This is where I think the novel actually succeeds: it plays out a satirical scenario, but the parts are all-too-familiar. Well-meaning people work hard to ensure something agreed to be good, and the result is Moloch. The Sleeper in the Pyramid is not half as scary as the Dweller in Whitehall. Because the later is real.

A clean well-lighted challenge: those eyes

On Extropy-chat my friend Spike suggested a fun writing challenge:

“So now I have a challenge for you.  Write a Hemmingway-esque story (or a you-esque story if you are better than Papa) which will teach me something, anything.  The Hemmingway story has memorable qualities, but taught me nada.  I am looking for a short story that is memorable and instructive, on any subject that interests you. Since there is so much to learn in this tragically short life, the shorter the story the better, but it should create memorable images like Hemmingway’s Clean, it must teach me something, anything. “

Here is my first attempt. (V 1.1, slightly improved from my list post and with some links). References and comments below.

Those eyes

“Customers!”
“Ah, yes, customers.”
“Cannot live with them, cannot live without them.”
“So, who?”
“The optics guys.”
“Those are the worst.”
“I thought that was the security guys.”
“Maybe. What’s the deal?”
Antireflective coatings. Dirt repelling.”
“That doesn’t sound too bad.”
“Some of the bots need to have diffraction spread, some should not. Ideally determined just when hatching.”
“Hatching? Self-assembling bots?”
“Yes. Can not do proper square root index matching in those. No global coordination.”
“Crawly bugbots?”
“Yes. Do not even think about what they want them for.”
“I was thinking of insect eyes.”
“No. The design is not faceted. The optics people have some other kind of sensor.”
“Have you seen reflections from insect eyes?”
“If you shine a flashlight in the garden at night you can see jumping spiders looking back at you.”
“That’s their tapeta, like a cat’s. I was talking about reflections from the surface.”
“I have not looked, to be honest.”
“There aren’t any glints when light glance across fly eyes. And dirt doesn’t stick.”
“They polish them a lot.”
“Sure. Anyway, they have nipples on their eyes.”
“Nipples?”
“Nipple like nanostructures. A whole field of them on the cornea.”
“Ah, lotus coatings. Superhydrophobic. But now you get diffraction and diffraction glints.”
“Not if they are sufficiently randomly distributed.”
“It needs to be an even density. Some kind of Penrose pattern.”
“That needs global coordination. Think Turing pattern instead.”
“Some kind of tape?”
“That’s Turing machine. This is his last work from ’52, computational biology.”
“Never heard of it.”
“It uses two diffusing signal substances: one that stimulates production of itself and an inhibitor, and the inhibitor diffuses further.”
“So a blob of the first will be self-supporting, but have a moat where other blobs cannot form.”
“Yep. That is the classic case. It all depends on the parameters: spots, zebra stripes, labyrinths, even moving leopard spots and oscillating modes.”
“All generated by local rules.”
“You see them all over the place.”
“Insect corneas?”
“Yes. Some Russians catalogued the patterns on insect eyes. They got the entire Turing catalogue.”
“Changing the parameters slightly presumably changes the pattern?”
“Indeed. You can shift from hexagonal nipples to disordered nipples to stripes or labyrinths, and even over to dimples.”
“Local interaction, parameters easy to change during development or even after, variable optics effects.”
“Stripes or hexagons would do diffraction spread for the bots.”
“Bingo.”

References and comments

Blagodatski, A., Sergeev, A., Kryuchkov, M., Lopatina, Y., & Katanaev, V. L. (2015). Diverse set of Turing nanopatterns coat corneae across insect lineages. Proceedings of the National Academy of Sciences, 112(34), 10750-10755.

My old notes on models of development for a course, with a section on Turing patterns. There are many far better introductions, of course.

Nanostructured chitin can do amazing optics stuff, like the wings of the Morpho butterflyP. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton (1999). “Quantified interference and diffraction in single Morpho butterfly scales“. Proceedings of the Royal Society B 266 (1427): 1403–11.

Another cool example of insect nano-optics: Land, M. F., Horwood, J., Lim, M. L., & Li, D. (2007). Optics of the ultraviolet reflecting scales of a jumping spider. Proceedings of the Royal Society of London B: Biological Sciences, 274(1618), 1583-1589.

One point Blagodatski et al. make is that the different eye patterns are scattered all over the insect phylogenetic tree: since it is easy to change parameters one can get whatever surface is needed by just turning a few genetic knobs (for example in snake skins or number of digits in mammals). I found a local paper looking at figuring out phylogenies based on maximum likelihood inference from pattern settings. While that paper was pretty optimistic on being able to figure out phylogenies this way, I suspect the Blagodatski paper shows that they can change so quickly that this will only be applicable to closely related species.

It is fun to look at how the Fourier transform changes as the parameters of the pattern change:
Leopard spot pattern

Random spot pattern

Zebra stripe pattern

Hexagonal dimple pattern

In this case I move the parameter b up from a low value to a higher one. At first I get “leopard spots” that divide and repel each other (very fun to watch), arraying themselves to fit within the boundary. This produces the vertical and horizontal stripes in the Fourier transform. As b increases the spots form a more random array, and there is no particular direction favoured in the transform: there is just an annulus around the center, representing the typical inter-blob distance. As b increases more, the blobs merge into stripes. For these parameters they snake around a bit, producing an annulus of uneven intensity. At higher values they merge into a honeycomb, and now the annulus collapses to six peaks (plus artefacts from the low resolution).