The capability caution principle and the principle of maximal awkwardness

ShadowsThe Future of Life Institute discusses the

Capability Caution Principle: There being no consensus, we should avoid strong assumptions regarding upper limits on future AI capabilities.

It is an important meta-principle in careful design to avoid assuming the most reassuring possibility and instead design based on the most awkward possibility.

When inventing a cryptosystem, do not assume that the adversary is stupid and has limited resources: try to make something that can withstand a computationally and intellectually superior adversary. When testing a new explosive, do not assume it will be weak – stand as far away as possible. When trying to improve AI safety, do not assume AI will be stupid or weak, or that whoever implements it will be sane.

Often we think that the conservative choice is the pessimistic choice where nothing works. This is because “not working” is usually the most awkward possibility when building something. If I plan a project I should ensure that I can handle unforeseen delays and that my original plans and pathways have to be scrapped and replaced with something else. But from a safety or social impact perspective the most awkward situation is if something succeeds radically, in the near future, and we have to deal with the consequences.

Assuming the principle of maximal awkwardness is a form of steelmanning and the least convenient possible world.

This is an approach based on potential loss rather than probability. Most AI history tells us that wild dreams rarely, if ever, come true. But were we to get very powerful AI tools tomorrow it is not too hard to foresee a lot of damage and disruption. Even if you do not think the risk is existential you can probably imagine that autonomous hedge funds smarter than human traders, automated engineering in the hands of anybody and scalable automated identity theft could mess up the world system rather strongly. The fact that it might be unlikely is not as important as that the damage would be unacceptable. It is often easy to think that in uncertain cases the burden of proof is on the other party, rather than on the side where a mistaken belief would be dangerous.

As FLI stated it the principle goes both ways: do not assume the limits are super-high either. Maybe there is a complexity scaling making problem-solving systems unable to handle more than 7 things in “working memory” at the same time, limiting how deep their insights could be. Maybe social manipulation is not a tractable task. But this mainly means we should not count on the super-smart AI as a solution to problems (e.g. using one smart system to monitor another smart system). It is not an argument to be complacent.

People often misunderstand uncertainty:

  • Some think that uncertainty implies that non-action is reasonable, or at least action should wait till we know more. This is actually where the precautionary principle is sane: if there is a risk of something bad happening but you are not certain it will happen, you should still try to prevent it from happening or at least monitor what is going on.
  • Obviously some uncertain risks are unlikely enough that they can be ignored by rational people, but you need to have good reasons to think that the risk is actually that unlikely – uncertainty alone does not help.
  • Gaining more information sometimes reduces uncertainty in valuable ways, but the price of information can sometimes be too high, especially when there are intrinsically unknowable factors and noise clouding the situation.
  • Looking at the mean or expected case can be a mistake if there is a long tail of relatively unlikely but terrible possibilities: on the average day your house does not have a fire, but having insurance, a fire alarm and a fire extinguisher is a rational response.
  • Combinations of uncertain factors do not become less uncertain as they are combined (even if you describe them carefully and with scenarios): typically you get broader and heavier-tailed distributions, and should act on the tail risk.

FLI asks the intriguing question of how smart AI can get. I really want to know that too. But it is relatively unimportant for designing AI safety unless the ceiling is shockingly low; it is safer to assume it can be as smart as it wants to. Some AI safety schemes involve smart systems monitoring each other or performing very complex counterfactuals: these do hinge on an assumption of high intelligence (or whatever it takes to accurately model counterfactual worlds). But then the design criteria should be to assume that these things are hard to do well.

Under high uncertainty, assume Murphy’s law holds.

(But remember that good engineering and reasoning can bind Murphy – it is just that you cannot assume somebody else will do it for you.)