What kinds of grand futures are there?

I have been working for about a year on a book on “Grand Futures” – the future of humanity, starting to sketch a picture of what we could eventually achieve were we to survive, get our act together, and reach our full potential. Part of this is an attempt to outline what we know is and isn’t physically possible to achieve, part of it is an exploration of what makes a future good.

Here are some things that appear to be physically possible (not necessarily easy, but doable):

  • Societies of very high standards of sustainable material wealth. At least as rich (and likely far above) current rich nation level in terms of what objects, services, entertainment and other lifestyle ordinary people can access.
  • Human enhancement allowing far greater health, longevity, well-being and mental capacity, again at least up to current optimal levels and likely far, far beyond evolved limits.
  • Sustainable existence on Earth with a relatively unchanged biosphere indefinitely.
  • Expansion into space:
    • Settling habitats in the solar system, enabling populations of at least 10 trillion (and likely many orders of magnitude more)
    • Settling other stars in the milky way, enabling populations of at least 1029 people
    • Settling over intergalactic distances, enabling populations of at least 1038 people.
  • Survival of human civilisation and the species for a long time.
    • As long as other mammalian species – on the order of a million years.
    • As long as Earth’s biosphere remains – on the order of a billion years.
    • Settling the solar system – on the order of 5 billion years
    • Settling the Milky Way or elsewhere – on the order of trillions of years if dependent on sunlight
    • Using artificial energy sources – up to proton decay, somewhere beyond 1032 years.
  • Constructing Dyson spheres around stars, gaining energy resources corresponding to the entire stellar output, habitable space millions of times Earth’s surface, telescope, signalling and energy projection abilities that can reach over intergalactic distances.
  • Moving matter and objects up to galactic size, using their material resources for meaningful projects.
  • Performing more than a google (10100) computations, likely far more thanks to reversible and quantum computing.

While this might read as a fairly overwhelming list, it is worth noticing that it does not include gaining access to an infinite amount of matter, energy, or computation. Nor indefinite survival. I also think faster than light travel is unlikely to become possible. If we do not try to settle remote galaxies within 100 billion years accelerating expansion will move them beyond our reach. This is a finite but very large possible future.

What kinds of really good futures may be possible? Here are some (not mutually exclusive):

  • Survival: humanity survives as long as it can, in some form.
  • “Modest futures”: humanity survives for as long as is appropriate without doing anything really weird. People have idyllic lives with meaningful social relations. This may include achieving close to perfect justice, sustainability, or other social goals.
  • Gardening: humanity maintains the biosphere of Earth (and possibly other planets), preventing them from crashing or going extinct. This might include artificially protecting them from a brightening sun and astrophysical disasters, as well as spreading life across the universe.
  • Happiness: humanity finds ways of achieving extreme states of bliss or other positive emotions. This might include local enjoyment, or actively spreading minds enjoying happiness far and wide.
  • Abolishing suffering: humanity finds ways of curing negative emotions and suffering without precluding good states. This might include merely saving humanity, or actively helping all suffering beings in the universe.
  • Posthumanity: humanity deliberately evolves or upgrades itself into forms that are better, more diverse or otherwise useful, gaining access to modes of existence currently not possible to humans but equally or more valuable.
  • Deep thought: humanity develops cognitive abilities or artificial intelligence able to pursue intellectual pursuits far beyond what we can conceive of in science, philosophy, culture, spirituality and similar but as yet uninvented domains.
  • Creativity: humanity plays creatively with the universe, making new things and changing the world for its own sake.

I have no doubt I have missed many plausible good futures.

Note that there might be moral trades, where stay-at-homes agree with expansionists to keep Earth an idyllic world for modest futures and gardening while the others go off to do other things, or long-term oriented groups agreeing to give short-term oriented groups the universe during the stelliferous era in exchange for getting it during the cold degenerate era trillions of years in the future. Real civilisations may also have mixtures of motivations and sub-groups.

Note that the goals and the physical possibilities play out very differently: modest futures do not reach very far, while gardener civilisations may seek to engage in megascale engineering to support the biosphere but not settle space. Meanwhile the happiness-maximizers may want to race to convert as much matter as possible to hedonium, while the deep thought-maximizers may want to move galaxies together to create permanent hyperclusters filled with computation to pursue their cultural goals.

I don’t know what goals are right, but we can examine what they entail. If we see a remote civilization doing certain things we can make some inferences on what is compatible with the behaviour. And we can examine what we need to do today to have the best chances of getting to a trajectory towards some of these goals: avoiding getting extinct, improve our coordination ability, and figure out if we need to perform some global coordination in the long run that we need to agree on before spreading to the stars.

Best problems to work on?

80,000 hours has a lovely overview of “What are the biggest problems in the world?” The best part is that each problem gets its own profile with a description, arguments in favor and against, and what already exists. I couldn’t resist plotting the table in 3D:

Most important problems according to 80,000 Hours, according to scale, neglectedness, and solvability.
Most important problems according to 80,000 Hours, according to scale, neglectedness, and solvability. Color denotes the sum of the values.

There are of course plenty of problems not listed; even if these are truly the most important there will be a cloud of smaller scale problems to the right. They list a few potential ones like cheap green energy, peace, human rights, reducing migration restrictions, etc.

I recently got the same question, and here are my rough answers:

  • Fixing our collective epistemic systems. Societies work as cognitive systems: acquiring information, storing, filtering and transmitting it, synthesising it, making decisions, and implementing actions. This is done through individual minds, media and institutions. Recently we have massively improved some aspects through technology, but it looks like our ability to filter, organise and jointly coordinate has not improved – in fact, many feel it has become worse. Networked media means that information can bounce around multiple times acquiring heavy bias, while filtering mechanisms relying on authority has lost credibility (rightly or wrongly). We are seeing all sorts of problems of coordinating diverse, polarised, globalised or confused societies. Decision-making that is not reality-tracking due to (rational or irrational) ignorance, bias or misaligned incentives is at best useless, at worst deadly. Figuring out how to improve these systems seem to be something with tremendous scale (good coordination and governance helps solve most problems above), it is fairly neglected (people tend to work on small parts rather than figuring out better systems), and looks decently solvable (again, many small pieces may be useful together rather than requiring a total perfect solution).
  • Ageing. Ageing kills 100,000 people per day. It is a massive cause of suffering, from chronic diseases to loss of life quality. It causes loss of human capital at nearly the same rate as all education and individual development together. A reduction in the health toll from ageing would not just save life-years, it would have massive economic benefits. While this would necessitate changes in society most plausible shifts (changing pensions, the concepts of work and life-course, how families are constituted, some fertility reduction and institutional reform) the cost and trouble with such changes is pretty microscopic compared to the ongoing death toll and losses. The solvability is improving: 20 years ago it was possible to claim that there were no anti-ageing interventions, while today there exist enough lab examples to make this untenable. Transferring these results into human clinical practice will however be a lot of hard work. It is also fairly neglected: far more work is being spent on symptoms and age-related illness and infirmity than root causes, partially for cultural reasons.
  • Existential risk reduction: I lumped together all the work to secure humanity’s future into one category. Right now I think reducing nuclear war risk is pretty urgent (not because of the current incumbent of the White House, but simply because the state risk probability seems to dominate the other current risks), followed by biotechnological risks (where we still have some time to invent solutions before the Collingridge dilemma really bites; I think it is also somewhat neglected) and AI risk (I put it as #3 for humanity, but it may be #1 for research groups like FHI that can do something about the neglectedness while we figure out better how much priority it truly deserves). But a lot of the effort might be on the mitigation side: alternative food to make the world food system more resilient and sun-independent, distributed and more robust infrastructure (whether better software security, geomagnetic storm/EMP-safe power grids, local energy production, distributed internet solutions etc.), refuges and backup solutions. The scale is big, most are neglected and many are solvable.

Another interesting set of problems is Robin Hanson’s post about neglected big problems. They are in a sense even more fundamental than mine: they are problems with the human condition.

As a transhumanist I do think the human condition entails some rather severe problems – ageing and stupidity is just two of them – and that we should work to fix them. Robin’s list may not be the easiest to solve, though (although there might be piecemeal solutions worth doing). Many enhancements, like moral capacity and well-being, have great scope and are very neglected but lose out to ageing because of the currently low solvability level and the higher urgency of coordination and risk reduction. As I see it, if we can ensure that we survive (individually and collectively) and are better at solving problems, then we will have better chances at fixing the tougher problems of the human condition.

Desperately Seeking Eternity

Circle of lifeMe on BBC3 talking about eternity, the universe, life extension and growing up as a species.

Online text of the essay.

Overall, I am pretty happy with it (hard to get everything I want into a short essay and without using my academic caveats, footnotes and digressions). Except maybe for the title, since “desperate” literally means “without hope”. You do not seek eternity if you do not hope for anything.