Overcoming inertia


The tremendous accelerations involved in the kind of spaceflight seen on Star Trek would instantly turn the crew to chunky salsa unless there was some kind of heavy-duty protection. Hence, the inertial damping field.
— Star Trek: The Next Generation Technical Manual, page 24.

For a space opera RPG setting I am considering adding inertia manipulation technology. But can one make a self-consistent inertia dampener without breaking conservation laws? What are the physical consequences? How many cool explosions, superweapons, and other tropes can we squeeze out of it? How to avoid the worst problems brought up by the SF community?

What inertia is

As Newton put it, inertia is the resistance of an object to a change in its state of motion. Newton’s force law F=ma is a consequence of the definition of momentum, p=mv (which in a way is more fundamental since it directly ties in with conservation laws). The mass in the formula is the inertial mass. Mass is a measure of how much there is of matter, and we normally multiply it with a hidden constant of 1 to get the inertial mass – this constant is what we will want to mess with.

There are relativistic versions of the laws of motion that handles momentum and inertia for high velocities, where the kinetic energy becomes so large that it starts to add mass to the whole system. This makes the total inertia go up, as seen by an outside observer, and looks like a nice case for inertia-manipulating tech being vaguely possible.

However, Einstein threw a spanner into this: gravity also acts on mass and conveniently does so exactly as much as inertia: gravitational mass (the masses in F=Gm_1m_2/r^2) and inertial mass appear to be equal. At least in my old school physics textbook (early 1980s!) this was presented as a cool unsolved mystery, but it is a consequence of the equivalence principle in general relativity (1907): all test particles accelerate the same way in a gravitational field, and this is only possible if their gravitational mass and inertial mass are proportional to one another.

So, an inertia manipulation technology will have to imply some form of gravity manipulation technology. Which may be fine from my standpoint, since what space opera is complete without antigravity? (In fact, I already had decided to have Alcubierre warp bubble FTL anyway, so gravity manipulation is in.)

Playing with inertia

OK, let’s leave relativity to the side for the time being and just consider the classical mechanics of inertia manipulation. Let us posit that there is a magical field that allows us to dial up or down the proportionality constant for inertial mass: the momentum of a particle will be p=\mu m v, the force law F=\mu m a and the formula for kinetic energy K=(1/2) \mu m v^2. \mu is the effect of the magic field, running from 0<\mu<\infty, with 1 corresponding to it being absent.

I throw a 1 g ping-pong ball at 1 m/s into my inertics device and turn on the field. What happens? Let us assume the field is \mu=1000. Now the momentum and kinetic energy jumps by a factor of 1000 if the velocity remains unchanged. Were I to catch the ball I would have gained 999 times its original kinetic energy: this looks like an excellent perpetual motion machine. Since we do not want that to be possible (a space empire powered by throwing ping-pong balls sounds silly) we must demand that energy is conserved.

Velocity shifting to preserve kinetic energy

Radiation shieldingOne way of doing energy conservation is for the velocity to go down for my heavy ping-pong ball. This means that the new velocity will be v/\sqrt{\mu}. Inertia-increasing fields slow down objects, while inertia-decreasing fields speed them up.


One could have a force-field made of super-high inertia that would slow down incoming projectiles. At first this seems pointless, since once they get through to the other side they speed up and will do the same damage. But we could of course put in a bunch of armour in this field, and have it resist the projectile. The kinetic energy will be the same but it will be a lower velocity collision which means that the strength of the armour has a better chance of stopping it (in fact, as we will see below, we can use superdense armour here too). Consider the difference between being shot with a rifle bullet or being slowly but strongly stabbed by it: in the later case the force can be distributed by a good armour to a vast surface. Definitely a good thing for a space opera.


A spacecraft that wants to get somewhere fast could just project a low \mu field around itself and boost its speed by a huge 1/\sqrt{\mu} factor. Sounds very useful. But now an impacting meteorite will both have an high relative speed, and when it enters the field get that boosted by the same factor again: impacts will happen at velocities increased by a factor of 1/\mu as measured by the ship. So boosting your speed with a factor of a 1000 will give you dust hitting you at speeds a million times higher. Since typical interplanetary dust already moves a few km/s, we are talking about hyperrelativistic impactors. The armour above sounds like a good thing to have…

Note that any inertia-reducing technology is going to improve rockets even if there is no reactionless drive or other shenanigans: you just reduce the inertia of the reaction mass. The rocket equation no longer bites: sure, your ship is mostly massive reaction mass in storage, but to accelerate the ship you just take a measure of that mass, restore its inertia, expel it, and enjoy the huge acceleration as the big engine pushes the overall very low-inertia ship. There is just a snag in this particular case: when restoring the inertia you somehow need to give the mass enough kinetic energy to be at rest in relation to the ship…


This kind of inertics does not make for a great cannon. I can certainly make my projectile speed up a lot in the bore by lowering its inertia, but as soon as it leaves it will slow down. If we assume a given amount of force F accelerating it along the length L bore, it will pick up FL Joules of kinetic energy from the work the cannon does – independent of mass or inertia! The difference may be power: if you can only supply a certain energy per second like in a coilgun, having a slower projectile in the bore is better.


Note that entering and leaving an inertics field will induce stresses. A metal rod entering an inertia-increasing field will have the part in the field moving more slowly, pushing back against the not slowed part (yet another plus for the armour!). When leaving the field the lighter part outside will pull away strongly.

Another effect of shifting velocities is that gases behave differently. At first it looks like changing speeds would change temperature (since we tend to think of the temperature of a gas as how fast the molecules are bouncing around), but actually the kinetic temperature of a gas depends on (you guessed it) the average kinetic energy. So that doesn’t change at all. However, the speed of sound should scale as \propto 1/\sqrt{\mu}: it becomes far higher in the inertia-dampening field, producing helium-voice like effects. Air molecules inside an inertia-decreasing field would tend to leave more quickly than outside air would enter, producing a pressure difference.

Momentum conservation is a headache

Atlas 6Changing the velocity so that energy is conserved unfortunately has a drawback: momentum is not conserved! I throw a heavy object at my inertics machine at velocity v, momentum mv and energy (1/2)mv^2, it reduces is inertia and increases the speed to v/\sqrt{\mu}, keeps the kinetic energy at (1/2)mv^2, and the momentum is now mv/\sqrt{\mu}.

What if we assume the momentum change comes from the field or machine? When I hit the mass M machine with an object it experiences a force enough to change its velocity by w=mv(1-1/\sqrt{\mu})/M. When set to increase inertia it is pushed back a bit, potentially moving up to speed (m/M)v. When set to decrease inertia it is pushed forward, starting to move towards the direction the object impacted from. In fact, it can get arbitrarily large velocities by reducing \mu close to 0.

This sounds odd. Demanding momentum and energy conservation requires mv = mv/\sqrt{\mu} + Mw (giving the above formula) and mv^2 = \mu m(v/\sqrt{\mu})^2 + Mw^2, which insists that w=0. Clearly we cannot have both.

I don’t know about you, but I’d rather keep energy conserved. It is more obvious when you cheat about energy conservation.

Still, as Einstein pointed out using 4-vectors, momentum and energy conservation are deeply entangled – one reason inertics isn’t terribly likely in the real world is that they cannot be separated. We could of course try to conserve 4-momentum ((E/c,\gamma \mu m v_x, \gamma \mu m v_y, \gamma \mu m v_z)), which would look like changing both energy and normal momentum at the same time.

Energy gain/loss to preserve momentum

Buffer stopsWhat about just retaining the normal momentum rather than the kinetic energy? The new velocity would be v/\mu, the new kinetic energy would be K_1=(1/2) \mu m (v/\mu)^2 = (1/2) mv^2 / \mu = K_0/\mu. Just like in the kinetic energy preserving case the object slows down (or speeds up), but more strongly. And there is an energy debt of K_0 (1-1/\mu) that needs to be fixed.

One way of resolving energy conservation is to demand that the change in energy is supplied by the inertia-manipulation device. My ping-pong ball does not change momentum, but requires 0.999 Joule to gain the new kinetic energy. The device has to provide that. When the ball leaves the field there will be a surge of energy the device needs to absorb back. Some nice potential here for things blowing up in dramatic ways, a requirement for any self-respecting space opera.


If I want to accelerate my spaceship in this setting, I would point my momentum vector towards the target, reduce my inertia a lot, and then have to provide a lot of kinetic energy from my inertics devices and power supply (actually, store a lot – the energy is a surplus). At first this sounds like it is just as bad as normal rocketry, but in fact it is awesome: I can convert my electricity directly into velocity without having to lug around a lot of reaction mass! I will even get it back when slowing down, a bit like electric brake regeneration systems.  The rocket equation does not apply beyond getting some initial momentum. In fact, the less velocity I have from the start, the better.

At least in this scheme inertia-reduced reaction mass can be restored to full inertia within the conceptual framework of energy addition/subtraction.

One drawback is that now when I run into interplanetary dust it will drain my batteries as the inertics system needs to give it a lot of kinetic energy (which will then go on harming me!)

Another big problem (pointed out by Erik Max Francis) is that turning energy into kinetic energy gives an energy requirement $latex dK/dt=mva$, which depends on an absolute speed. This requires a privileged reference frame, throwing out relativity theory. Oops (but not unexpected).


Energy addition/depletion makes traditional force-fields somewhat plausible: a projectile hits the field, and we use the inertics to reduce its kinetic energy to something manageable. A rifle bullet has a few thousand Joules of energy, and if you can drain that it will now harmlessly bounce off your normal armour. Presumably shields will be depleted when the ship cannot dissipate or store the incoming kinetic energy fast enough, causing the inertics to overload and then leaving the ship unshielded.


This kind of inertics allows us to accelerate projectiles using the inertics technology, essentially feeding them as much kinetic energy as we want. If you first make your projectile super-heavy, accelerate it strongly, and then normalise the inertia it will now speed away with a huge velocity.


A metal rod entering this kind of field will experience the same type of force as in the kinetic energy respecting model, but here the field generator will also be working on providing energy balance: in a sense it will be acting as a generator/motor. Unfortunately it does not look like it could give a net energy gain by having matter flow through.

Note that this kind of device cannot be simply turned off like the previous one: there has to be an energy accounting as everything returns to \mu=1. The really tricky case is if you are in energy-debt: you have an object of lowered inertia in the field, and cut the power. Now the object needs to get a bunch of kinetic energy from somewhere. Sudden absorption of nearby kinetic energy, freezing stuff nearby? That would break thermodynamics (I could set up a perpetual motion heat engine this way). Leaving the inertia-changed object with the changed inertia? That would mean there could be objects and particles with any effective mass – space might eventually be littered with atoms with altered inertia, becoming part of normal chemistry and physics. No such atoms have ever been found, but maybe that is because alien predecessor civilisations were careful with inertial pollution.

Other approaches

Gravity manipulation

Levitating morris dancersAnother approach is to say that we are manipulating spacetime so that inertial forces are cancelled by a suitable gravity force (or, for purists, that the acceleration due to something gets cancelled by a counter-acceleration due to spacetime curvature that makes the object retain the same relative momentum).

The classic is the “gravitic drive” idea, where the spacecraft generates a gravity field somehow and then free-falls towards the destination. The acceleration can be arbitrarily large but the crew will just experience freefall. Same thing for accelerating projectiles or making force-fields: they just accelerate/decelerate projectiles a lot. Since momentum is conserved there will be recoil.

The force-fields will however be wimpy: essentially it needs to be equivalent to an acceleration bringing the projectile to a stop over a short distance. Given that normal interplanetary velocities are in tens of kilometres per second (escape velocity of Earth, more or less) the gravity field needs to be many, many Gs to work. Consider slowing down a 20 km/s railgun bullet to a stop over a distance of 10 meters: it needs to happen over a millisecond and requires a 20 million m/s^2 deceleration (2.03 megaG).

If we go with energy and momentum conservation we may still need to posit that the inertics/antigravity draws power corresponding to the work it does . Make a wheel turn because of an attracting and repulsing field, and the generator has to pay the work (plus experience a torque). Make a spacecraft go from point A to B, and it needs to pay the potential energy difference, momentum change, and at least temporarily the gain in kinetic energy. And if you demand momentum conservation for a gravitic drive, then you have the drive pulling back with the same “force” as the spacecraft experiences. Note that energy and momentum in general relativity are only locally conserved; at least this kind of drive can handwave some excuse for breaking local momentum conservation by positing that the momentum now resides in an extended gravity field (and maybe gravitational waves).

Unlike the previous kinds of inertics this doesn’t change the properties of matter, so the effects on objects discussed below do not apply.

One problem is edge tidal effects. Somewhere there is going to be a transition zone where there is a field gradient: an object passing through is going to experience some extreme shear forces and likely spaghettify. Conversely, this makes for a nifty weapon ripping apart targets.

One problem with gravity manipulation is that it normally has to occur through gravity, which is both very weak and only has positive charges. Electromagnetic technology works so well because we can play positive and negative charges against each other, getting strong effects without using (very) enormous numbers of electrons. Gravity (and gravitomagnetic effects) normally only occurs due to large mass-energy densities and momenta. So for this to work there better be antigravitons, negative mass, or some other way of making gravity behave differently from vanilla relativity. Inertics can typically handwave something about the Higgs field at least.

Forcefield manipulation

This leaves out the gravity part and just posits that you can place force vectors wherever you want. A bit like Iain M. Banks’ effector beams. No real constraints because it is entirely made-up physics; it is not clear it respects any particular conservation laws.

Other physical effects

Here are some of the nontrivial effects of changing inertia of matter (I will leave out gravity manipulation, which has more obvious effects).

Electromagnetism: beware the blue carrot

It is worth noting that this thought experiment does not affect light and other electromagnetic fields: photons are massless. The overall effect is that they will tend to push around charged objects in the field more or less. A low-inertia electron subjected to a given electric field will accelerate more, a high-inertia electron less. This in turn changes the natural frequencies of many systems: a radio antenna will change tuning depending on the inertia change. A receiver inside the inertics field will experience outside signals as being stronger (if the field decreases inertia) or weaker (if it increases it).

Reducing inertia also increases the Bohr magneton, e\hbar/2 \mu m_e. This means that paramagnetic materials become more strongly affected by magnetic fields, and that ferromagnets are boosted. Conversely, higher inertia reduces magnetic effects.

Changing inertia would likely change atomic spectra (see below) and hence optical properties of many compounds. Many pigments gain their colour from absorption due to conjugated systems (think of carotene or heme) that act as antennas: inertia manipulation will change the absorbed frequencies. Carotene with increased inertia will presumably shift its absorption spectra towards lower frequencies, becoming redder, while lowered inertia causes a green or blue shift. An interesting effect is that the rhodopsin in the eye will also be affected and colour vision will experience the same shift (objects will appear to change colour in regions with a different \mu from the place where the observer is, but not inside their field). Strong enough fields will cause shifts so that absorption and transmission outside the visual range will matter, e.g. infrared or UV becomes visible.

However, the above claim that photons should not be affected by inertia manipulation may not have to hold true. Photons carry momentum, p=\hbar k where k is the wave vector. So we could assume a factor of 1/\sqrt{\mu} or 1/\mu gets in there and the field red/blueshifts photons. This would complicate things a lot, so I will leave analysis to the interested reader. But it would likely make inertics fields visible due to refractive effects.

Chemistry: toxic energy levels, plus a shrink-ray

Projectile warningOne area inertics would mess up is chemistry. Chemistry is basically all about the behaviour of the valence electrons of atoms. Their behaviour depends on their distribution between the atomic orbitals, which in turn depends on the Schrödinger equation for the atomic potential. And this equation has a dependency on the mass of the electron and nucleus.

If we look at hydrogen-like atoms, the main effect is that the energy levels become

E_n = - \mu (M Z^2 e^4/8 \epsilon_0^2 h^2 n^2),

where M=m_e m_p/(m_e+m_p) is the reduced mass. In short, the inertial manipulation field scales the energy levels up and down proportionally. One effect is that it becomes much easier to ionise low-inertia materials, and that materials that are normally held together by ionization bonds (say NaCl salt) may spontaneously decay when in high-inertia fields.

The Bohr radius scales as a_0 \propto 1/\mu: low-inertia atoms become larger. This really messes with materials. Placed in a low-inertia field atoms expand, making objects such as metals inflate. In a high inertia-field, electrons keep closer to the nuclei and objects shrink.

As distances change, the effects of electromagnetic forces also change: internal molecular electric forces, van der Waals forces and things like that change in strength, which will no doubt have effects on biology. Not to mention melting points: reducing the inertia will make many materials melt at far lower temperatures due to larger inter-atomic and inter-molecular distances, increasing it can make room-temperature liquids freeze because they are now more closely packed.

This size change also affects the electron-electron interactions, which among other things shield the nucleus and reduce the effective nuclear charge. The changed energy levels do not strongly affect the structure of the lightest atoms, so they will likely form the same kind of chemical bonds and have the same chemistry. However, heavier atoms such as copper, chromium and palladium already have ordering rules that are slightly off because of the quirks of the energy levels. As the field deviates from 1 we should expect lighter and lighter atoms to get alternative filling patterns and this means they will get different chemistry. Given that copper and chromium are essential for some enzymes, this does not bode well – if copper no longer works in cytochrome oxidase, the respiratory chain will lethally crash.

If we allow permanently inertia-altered particles chemistry can get extremely weird. An inertia-changed electron would orbit in a different way than a normal one, giving the atom it resided in entirely different chemical properties. Each changed electron could have its own individual inertia. Presumably such particles would randomise chemistry where they resided, causing all sorts of odd reactions and compounds not normally seen. The overall effect would likely be pretty toxic, since it would on average tend to catalyze metastable high-energy, low-entropy structures in biochemistry to fall down to lower energy, higher entropy states.

Lowering inertia in many ways looks like heating up things: particles move faster, chemicals diffuse more, and things melt. Given that much of biochemistry is tremendously temperature dependent, this suggests that even slight changes of \mu to 0.99 or 1.01 would be enough to create many of the bad effects of high fever or hypothermia, and a bit more would be directly lethal as proteins denaturate.

Fluids: I need a lie down

Inside a lowered inertia field matter responds more strongly to forces, and this means that fluids flow faster for the same pressure difference. Buoyancy cases stronger convection. For a given velocity, the inertial forces  are reduced compared to the viscosity, lowering the Reynolds number and making flows more laminar. Conversely, enhanced inertia fluids are hard to get to move but at a given speed they will be more turbulent.

This will really mess up the sense of balance and likely blood flow.

Gravity: equivalent exchange

I have ignored the equivalence of inertial and gravitational mass. One way for me to get away with it is to claim that they are still equivalent, since everything occurs within some local region where my inertics field is acting: all objects get their inertial mass multiplied by \mu and this also changes their gravitational mass. The equivalence principle still holds.

What if there is no equivalence principle? I could make 1 kg object and a 1 gram object fall at different accelerations. If I had a massless spring between them it would be extended, and I would gain energy. Beside the work done by gravity to bring down the objects (which I could collect and use to put them back where they started) I would now have extra energy – aha, another perpetual motion machine! So we better stick to the equivalence principle.

Given that boosting inertia makes matter both tend to shrink to denser states and have more gravitational force, an important worldbuilding issue is how far I will let this process go. Using it to help fission or fusion seems fine. Allowing it to squeeze matter into degenerate states or neutronium might be more world-changing. And easy making of black holes is likely incompatible with the survival of civilisation.

[ Still, destroying planets with small black holes is harder than it looks. The traditional “everything gets sucked down into the singularity” scenario is surprisingly slow. If you model it using spherical Bondi accretion you need an Earth-mass black hole to make the sun implode within a year or so, and a 3\cdot 10^{19} kg asteroid mass black hole to implode the Earth. And the extreme luminosity slows things a lot more. A better way may be to use an evaporating black hole to irradiate the solar system instead, or blow up something sending big fragments. ]

Another fun use of inertics is of course to mess up stars directly. This does not work with the energy addition/depletion model, but the velocity change model would allow creating a region of increased inertia where density ramps up: plasma enters the volume and may start descending below the spot. Conversely, reducing inertia may open a channel where it is easier for plasma from the interior to ascend (especially since it would be lighter). Even if one cannot turn this into a black hole or trigger surface fusion, it might enable directed flares as the plasma drags electromagnetic field lines with it.

The probe was invisible on the monitor, but its effects were obvious: titanic volumes of solar plasma were sucked together into a strangely geometric sunspot. Suddenly there was a tiny glint in the middle and a shock-wave: the telemetry screens went blank.

“Seems your doomsday weapon has failed, professor. Mad science clearly has no good concept of proper workmanship.”

“Stay your tongue. This is mad engineering: the energy ran out exactly when I had planned. Just watch.”

Without the probe sucking it together the dense plasma was now wildly expanding. As it expanded it cooled. Beyond a certain point it became too cold to remain plasma: there was a bright flash as the protons and electrons recombined and the vortex became transparent. Suddenly neutral the matter no longer constrained the tortured magnetic field lines and they snapped together at the speed of light. The monitor crashed.

“I really hope there is no civilization in this solar system sensitive to massive electromagnetic pulses” the professor gloated in the dark.


Model Pros Cons
Preserve kinetic energy Nice armour. Fast spacecraft with no energy needs (but weird momentum changes). Interplanetary dust is a problem. Inertics cannons inefficient. Toxic effects on biochemistry.
Preserve momentum Nice classical forcefield. Fast spacecraft with energy demands. Inertics cannons work. Potential for cool explosions due to overloads. Interplanetary dust drains batteries. Extremely weird issues of energy-debts: either breaking thermodynamics or getting altered inertia materials. Toxic effects on biochemistry. Breaks relativity.
Gravity manipulation No toxic chemistry effects. Fast spacecraft with energy demands. Inertics cannons work. Forcefields wimpy. Gravitic drives are iffy due to momentum conservation (and are WMDs). Gravity is more obviously hard to manipulate than inertia. Tidal edge forces.

In both cases where actual inertia is changed inertics fields appear pretty lethal. A brief brush with a weak field will likely just be incapacitating, but prolonged exposure is definitely going to kill. And extreme fields are going to do very nasty stuff to most normal materials – making them expand or contract, melt, change chemical structure and whatnot. Hence spacecraft, cannons and other devices using inertics need to be designed to handle these effects. One might imagine placing the crew compartment in a counter-inertics field keeping \mu=1 while the bulk of the spacecraft is surrounded by other fields. A failure of this counter-inertics field does not just instantly turn the crew into tuna paste, but into blue toxic tuna paste.

Gravity manipulation is cleaner, but this is not necessarily a plus from the cool fiction perspective: sometimes bad side effects are exactly what world-building needs. I love the idea of inertics with potential as an anti-personnel or assassination weapon through its biochemical effects, or “forcefields” being super-dense metal with amplified inertia protecting against high-velocity or beam impact.

The atomic rocket page makes a big deal out of how reactionless propulsion makes space opera destroying weapons of mass destruction (if every tramp freighter can be turned into a relativistic missile, how long is the Imperial Capital going to last?) This is a smaller problem here: being hit by a inertia-reduced freighter hurts less, even when it is very fast (think of being hit by a fast ping-pong ball). Gravity propulsion still enables some nasty relativistic weaponry, and if you spend time adding kinetic energy to your inertia-reduced missile it can become pretty nasty. But even if the reactionless aspect does not trivially produce WMDs inertia manipulation will produce a fair number of other risky possibilities. However, given that even a normal space freighter is a hypervelocity missile, the problem lies more in how to conceptualise a civilisation that regularly handles high-energy objects in the vicinity of centres of civilisation.

Not discussed here are issues of how big the fields can be made. Could we reduce the inertia of an asteroid or planet, sending it careening around? That has some big effects on the setting. Similarly, how small can we make the inertics: do they require a starship to power them, or could we have them in epaulettes? Can they be counteracted by another field?

Inertia-changing devices are really tricky to get to work consistently; most space opera SF using them just conveniently ignores the mess – just like how FTL gives rise to time travel or that talking droids ought to transform the global economy totally.

But it is fun to think through the awkward aspects, since some of them make the world-building more exciting. Plus, I would rather discover them before my players, so I can make official handwaves of why they don’t matter if they are brought up.

Starkiller base versus the ideal gas law

Partial eclipseMy friend Stuart explains why the Death Stars and the Starkiller Base in the Star Wars universe are inefficient ways of taking over the galaxy. I generally agree: even a super-inefficient robot army will win if you simply bury enemy planets in robots.

But thinking about the physics of absurd superweapons is fun and warms the heart.

The ideal gas law: how do you compress stars?

My biggest problem with the Starkiller Base is the ideal gas law. The weapon works by sucking up a star and then beaming its energy or plasma at remote targets. A sun-like star has a volume around 1.4*1018 cubic kilometres, while an Earthlike planet has a volume around 1012 cubic kilometres. So if you suck up a star it will get compressed by a factor of 1.4 million times. The ideal gas law states that pressure times volume equals temperature times the number of particles and some constant: PV=nRT

1.4 million times less volume needs to be balanced somehow: either the pressure P has to go down, the temperature T has to go up, or the number of particles n need to go down.

Pressure reduction seems to be a non-starter, unless the Starkiller base actually contains some kind of alternate dimension where there is no pressure (or an enormous volume).

The second case implies a temperature increase by a factor of a 1.4 million. Remember how hot a bike pump gets when compressing air: this is the same effect. This would heat the photosphere gas to 8.4 billion degrees and the core to 2.2*1013 K, 22 TeraKelvin; the average would be somewhere between, on the hotter side. We are talking about temperatures microseconds after the Big Bang, hotter than a supernova: protons and neutrons melt at 0.5–1.2 TK into a quark-gluon plasma. Excellent doomsday weapon material but now containment seems problematic. Even if we have antigravity forcefields to hold the star, the black-body radiation is beyond the supernova range. Keeping it inside a planet would be tough: the amount of neutrino radiation would likely blow up the surface like a supernova bounce does.

Maybe the extra energy is bled off somehow? That might be a way to merely get super-hot plasma rather than something evaporating the system. Maybe those pesky neutrinos can be shunted into hyperspace, taking most of the heat with them (neutrino cooling can be surprisingly fast for very hot objects; at these absurd temperatures it is likely subsecond down to mere supernova temperatures).

Another bizarre and fun approach is to reduce the number of gas particles: simply fuse them all into a single nucleus. A neutron star is in a sense a single atomic nucleus. As a bonus, the star would now be a tiny multikilometre sphere held together by its own gravity. If n is reduced by a factor of 1057 it could outweigh the compression temperature boost. There would be heating from all the fusion; my guesstimate is that it is about a percent of the mass energy, or 2.7*1045 J. This would heat the initial gas to around 96 billion degrees, still manageable by the dramatic particle number reduction. This approach still would involve handling massive neutrino emissions, since the neutronium would still be pretty hot.

In this case the star would remain gravitationally bound into a small blob: convenient as a bullet. Maybe the red “beam” is actually just an accelerated neutron star, leaking mass along its trajectory. The actual colour would of course be more like blinding white with a peak in the gamma ray spectrum. Given the intense magnetic fields locked into neutron stars, moving them electromagnetically looks pretty feasible… assuming you have something on the other end of the electromagnetic field that is heavier or more robust. If a planet shoots a star-mass bullet at a high velocity, then we should expect the recoil to send the planet moving at about a million times faster in the opposite direction.

Other issues

We have also ignored gravity: putting a sun-mass inside an Earth-radius means we get 333,000 times higher gravity. We can try to hand-wave this by arguing that the antigravity used to control the star eating also compensates for the extra gravity. But even a minor glitch in the field would produce an instant, dramatic squishing. Messing up the system* containing the star would not produce conveniently dramatic earthquakes and rifts, but rather near-instant compression into degenerate matter.

(* System – singular. Wow. After two disasters due to single-point catastrophic failures one would imagine designers learning their lesson. Three times is enemy action: if I were the Supreme Leader I would seriously check if the lead designer happens to be named Skywalker.)

There is also the issue of the amount of energy needed to run the base. Sucking up a star from a distance requires supplying the material with the gravitational binding energy of the star, 6.87*1041 J for the sun. Doing this over an hour or so is a pretty impressive power, about 1.9*1038 W. This is about 486 billion times the solar luminosity. In fact, just beaming that power at a target using any part of the electromagnetic spectrum would fry just about anything.

Of course, a device that can suck up a star ought to be able to suck up planets a million times faster. So there is no real need to go for stars: just suck up the Republic. Since the base can suck up space fleets too, local defences are not much of a problem. Yes, you may have to go there with your base, but if the Death Star can move, the Starkiller can too. If nothing else, it could use its beam to propel itself.

If the First Order want me to consult on their next (undoubtedly even more ambitious) project I am open for offers. However, one iron-clad condition given recent history is that I get to work from home, as far away as possible from the superweapon. Ideally in a galaxy far, far away.

Dampening theoretical noise by arguing backwards

WhiteboardScience has the adorable headline Tiny black holes could trigger collapse of universe—except that they don’t, dealing with the paper Gravity and the stability of the Higgs vacuum by Burda, Gregory & Moss. The paper argues that quantum black holes would act as seeds for vacuum decay, making metastable Higgs vacua unstable. The point of the paper is that some new and interesting mechanism prevents this from happening. The more obvious explanation that we are already in the stable true vacuum seems to be problematic since apparently we should expect a far stronger Higgs field there. Plenty of theoretical issues are of course going on about the correctness and consistency of the assumptions in the paper.

Don’t mention the war

What I found interesting is the treatment of existential risk in the Science story and how the involved physicists respond to it:

Moss acknowledges that the paper could be taken the wrong way: “I’m sort of afraid that I’m going to have [prominent theorist] John Ellis calling me up and accusing me of scaremongering.

Ellis is indeed grumbling a bit:

As for the presentation of the argument in the new paper, Ellis says he has some misgivings that it will whip up unfounded fears about the safety of the LHC once again. For example, the preprint of the paper doesn’t mention that cosmic-ray data essentially prove that the LHC cannot trigger the collapse of the vacuum—”because we [physicists] all knew that,” Moss says. The final version mentions it on the fourth of five pages. Still, Ellis, who served on a panel to examine the LHC’s safety, says he doesn’t think it’s possible to stop theorists from presenting such argument in tendentious ways. “I’m not going to lose sleep over it,” Ellis says. “If someone asks me, I’m going to say it’s so much theoretical noise.” Which may not be the most reassuring answer, either.

There is a problem here in that physicists are so fed up with popular worries about accelerator-caused disasters – worries that are often second-hand scaremongering that takes time and effort to counter (with marginal effects) – that they downplay or want to avoid talking about things that could feed the worries. Yet avoiding topics is rarely the best idea for finding the truth or looking trustworthy. And given the huge importance of existential risk even when it is unlikely, it is probably better to try to tackle it head-on than skirt around it.

Theoretical noise

“Theoretical noise” is an interesting concept. Theoretical physics is full of papers considering all sorts of bizarre possibilities, some of which imply existential risks from accelerators. In our paper Probing the Improbable we argue that attempts to bound accelerator risks have problems due to the non-zero probability of errors overshadowing the probability they are trying to bound: an argument that there is zero risk is actually just achieving the claim that there is about 99% chance of zero risk, and 1% chance of some risk. But these risk arguments were assumed to be based on fairly solid physics. Their errors would be slips in logic, modelling or calculation rather than being based on an entirely wrong theory. Theoretical papers are often making up new theories, and their empirical support can be very weak.

An argument that there is some existential risk with probability P actually means that, if the probability of the argument is right is Q, there is risk with probability PQ plus whatever risk there is if the argument is wrong (which we can usually assume to be close to what we would have thought if there was no argument in the first place) times 1-Q. Since the vast majority of theoretical physics papers never go anywhere, we can safely assume Q to be rather small, perhaps around 1%. So a paper arguing for P=100% isn’t evidence the sky is falling, merely that we ought to look more closely to a potentially nasty possibility that is likely to turn into a dud. Most alarms are false alarms.

However, it is easier to generate theoretical noise than resolve it. I have spent some time working on a new accelerator risk scenario, “dark fire”, trying to bound the likelihood that it is real and threatening. Doing that well turned out to be surprisingly hard: the scenario was far more slippery than expected, so ruling it out completely turned out to be very hard (don’t worry, I think we amassed enough arguments to show the risk to be pretty small). This is of course the main reason for the annoyance of physicists: it is easy for anyone to claim there is risk, but then it is up to the physics community to do the laborious work of showing that the risk is small.

The vacuum decay issue has likely been dealt with by the Tegmark and Bostrom paper: were the decay probability high we should expect to be early observers, but we are fairly late ones. Hence the risk per year in our light-cone is small (less than one in a billion). Whatever is going on with the Higgs vacuum, we can likely trust it… if we trust that paper. Again we have to deal with the problem of an argument based on applying anthropic probability (a contentious subject where intelligent experts disagree on fundamentals) to models of planet formation (based on elaborate astrophysical models and observations): it is reassuring, but it does not reassure as strongly as we might like. It would be good to have a few backup papers giving different arguments bounding the risk.

Backward theoretical noise dampening?

The lovely property of the Tegmark and Bostrom paper is that it covers a lot of different risks with the same method. In a way it handles a sizeable subset of the theoretical noise at the same time. We need more arguments like this. The cosmic ray argument is another good example: it is agnostic on what kind of planet-destroying risk is perhaps unleashed from energetic particle interactions, but given the past number of interactions we can be fairly secure (assuming we patch its holes).

One shared property of these broad arguments is that they tend to start with the risky outcome and argue backwards: if something were to destroy the world, what properties does it have to have? Are those properties possible or likely given our observations? Forward arguments (if X happens, then Y will happen, leading to disaster Z) tend to be narrow, and depend on our model of the detailed physics involved.

While the probability that a forward argument is correct might be higher than the more general backward arguments, it only reduces our concern for one risk rather than an entire group. An argument about why quantum black holes cannot be formed in an accelerator is limited to that possibility, and will not tell us anything about risks from Q-balls. So a backwards argument covering 10 possible risks but just being half as likely to be true as a forward argument covering one risk is going to be more effective in reducing our posterior risk estimate and dampening theoretical noise.

In a world where we had endless intellectual resources we would of course find the best possible arguments to estimate risks (and then for completeness and robustness the second best argument, the third, … and so on). We would likely use very sharp forward arguments. But in a world where expert time is at a premium and theoretical noise high we can do better by looking at weaker backwards arguments covering many risks at once. Their individual epistemic weakness can be handled by making independent but overlapping arguments, still saving effort if they cover many risk cases.

Backwards arguments also have another nice property: they help dealing with the “ultraviolet cut-off problem“. There is an infinite number of possible risks, most of which are exceedingly bizarre and a priori unlikely. But since there are so many of them, it seems we ought to spend an inordinate effort on the crazy ones, unless we find a principled way of drawing the line. Starting from a form of disaster and working backwards on probability bounds neatly circumvents this: production of planet-eating dragons is among the things covered by the cosmic ray argument.

Risk engineers will of course recognize this approach: it is basically a form of fault tree analysis, where we reason about bounds on the probability of a fault. The forward approach is more akin to failure mode and effects analysis, where we try to see what can go wrong and how likely it is. While fault trees cannot cover every possible initiating problem (all those bizarre risks) they are good for understanding the overall reliability of the system, or at least the part being modelled.

Deductive backwards arguments may be the best theoretical noise reduction method.

Awesome blogs

I recently discovered Alex Wellerstein’s excellent blog Restricted data: the nuclear secrecy blog. I found it while looking for nuclear stockpiles data, but was drawn in by a post on the evolution of nuclear yield to mass. Then I started reading the rest of it. And finally, when reading this post about the logo of the IAEA I realized I needed to mention to the world how good it is. Be sure to test the critical assembly simulator to learn just why critical mass is not the right concept.

Another awesome blog is Almost looks like work by Jasmcole. I originally found it through a wonderfully over the top approach to positioning a wifi router (solving Maxwell’s equations turns out to be easier than the Helmholz equation!). But there are many other fascinating blog essays on physics, mathematics, data visualisation, and how to figure out propeller speeds from camera distortion.


A sustainable orbital death ray

Visualizing lightI have for many years been a fan of the webcomic Schlock Mercenary. Hardish, humorous military sf with some nice, long-term plotting.

In the current plotline (some spoilers ahead) there is an enormous Chekov’s gun: Earth is surrounded by an equatorial ring of microsatellites that can reflect sunlight. It was intended for climate control, but as the main character immediately points out, it also makes an awesome weapon. You can guess what happens. That leds to an interesting question: just how effective would such a weapon actually be?

From any point on Earth’s surface only part of the ring is visible above the horizon. In fact, at sufficiently high latitudes it is entirely invisible – there you would be safe no matter what. Also, Earth likely casts a shadow across the ring that lowers the efficiency on the nightside.

I guessed, based on the appearance in some strips, that the radius is about two Earth radii (12,000 km), and the thickness about 2000 km. I did a Monte Carlo integration where I generated random ring microsatellites, checking whether they were visible above the horizon for different Earth locations (by looking at the dot product of the local normal and the satellite-location vector; for anything above the horizon this product must be possible) and were in sunlight (by checking that the distance to the Earth-Sun axis was more than 6000 km). The result is the following diagram of how much of the ring can be seen from any given location:

Visibility fraction of an equatorial ring 12,000-14,000 km out from Earth for different latitudes and longitudes.
Visibility fraction of an equatorial ring 12,000-14,000 km out from Earth for different latitudes and longitudes.

At most, 35% of the ring is visible. Even on the nightside where the shadow cuts through the ring about 25% is visible. In practice, there would be a notch cut along the equator where the ring cannot fire through itself; just how wide it would be depends on the microsatellite size and properties.

Overlaying the data on a world map gives the following footprint:

Visibility fraction of 12,000-14,000 ring from different locations on Earth.
Visibility fraction of 12,000-14,000 ring from different locations on Earth.

The ring is strongly visible up to 40 degrees of latitude, where it starts to disappear below the southern or northern horizon. Antarctica, northern Canada, Scandinavia and Siberia are totally safe.

This corresponds to the summer solstice, where the ring is maximally tilted relative to the Earth-Sun axis. This is when it has maximal power: at the equinoxes it is largely parallel to the sunlight and cannot reflect much at all.

The total amount of energy the ring receives is E_0 = \pi (r_o^2-r_i^2)|\sin(\theta)|S where r_o is the outer radius, r_i the inner radius, $\theta$ the tilt (between 23 degrees for the summer/winter solstice and 0 for equinoxes) and S is the solar constant, 1.361 kW/square meter. This ignores the Earth shadow. So putting in \theta=20^{\circ} for a New Years Eve firing, I get E_0 \approx 7.6\cdot 10^{16} Watt.

If we then multiply by 0.3 for visibility, we get 23 petawatts – is nothing to sneeze at! Of course, there will be losses, both in reflection (likely a few percent at most) and more importantly through light scattering (about 25%, assuming it behaves like normal sunlight). Now, a 17 PW beam is still pretty decent. And if you are on the nightside the shadowed ring surface can still give about 8 PW. That is about six times the energy flow in the Gulf Stream.

Light pillar

How destructive would such a beam be? A megaton of TNT is 4.18 PJ. So in about a second the beam could produce a comparable amount of heat.  It would be far redder than a nuclear fireball (since it is essentially 6000K blackbody radiation) and the IR energy would presumably bounce around and be re-radiated, spreading far in the transparent IR bands. I suspect the fireball would quickly affect the absorption in a complicated manner and there would be defocusing effects due to thermal blooming: keeping it on target might be very hard, since energy would both scatter and reflect. Unlike a nuclear weapon there would not be much of a shockwave (I suspect there would still be one, but less of the energy would go into it).

The awesome thing about the ring is that it can just keep on firing. It is a sustainable weapon powered by renewable energy. The only drawback is that it would not have an ommminous hummmm….

Addendum 14 December: I just realized an important limitation. Sunlight comes from an extended source, so if you reflect it using plane mirrors you will get a divergent beam – which means that the spot it hits on the ground will be broad. The sun has diameter 1,391,684 km and is 149,597,871 km away, so the light spot 8000 km below the reflector will be 74 km across. This is independent of the reflector size (down to the diffraction limit and up to a mirror that is as large as the sun in the sky).

Intensity with three overlapping beams.
Intensity with three overlapping beams.

At first this sounds like it kills the ring beam. But one can achieve a better focus by clever alignment. Consider three circular footprints arranged like a standard Venn diagram. The center area gets three times the solar input as the large circles. By using more mirrors one can make a peak intensity that is much higher than the side intensity. The vicinity will still be lit up very brightly, but you can focus your devastation better than with individual mirrors – and you can afford to waste sunlight anyway. Still, it looks like this is more of a wide footprint weapon of devastation rather than a surgical knife.

Intensity with 200 beams overlapping slightly.
Intensity with 200 beams overlapping slightly.


Somebody think of the electrons!

Atlas 6Brian Tomasik has a fascinating essay: Is there suffering in fundamental physics?

He admits from the start that “Any sufficiently advanced consequentialism is indistinguishable from its own parody.” And it would be easy to dismiss this as taking compassion way too far: not just caring about plants or rocks, but the possible suffering of electrons and positrons.

I think he has enough arguments to show that the idea is not entirely crazy: we do not understand the ontology of phenomenal experience well enough that we can easily rule out small systems having states, panpsychism is a view held by some rational people, it seems a priori unlikely that there is some mid-sized systems that have all the value in the universe rather than the largest or the smallest scale, we have strong biases towards our kind of system, and information physics might actually link consciousness with physics.

None of these are great arguments, but there are many of them. And the total number of atoms or particles is huge: even assigning a tiny fraction of human moral consideration to them or a tiny probability of them mattering morally will create a large expected moral value. The smallness of moral consideration or the probability needs to be far outside our normal reasoning comfort zone: if you assign a probability lower than 10^{-10^{56}} to a possibility you need amazingly strong reasons given normal human epistemic uncertainty.

I suspect most readers will regard this outside their “ultraviolett cutoff” for strange theories: just as physicists successfully invented/discovered a quantum cutoff to solve the ultraviolet catastrophe, most people have a limit where things are too silly or strange to count. Exactly how to draw it rationally (rather than just base it on conformism or surface characteristics) is a hard problem when choosing between the near infinity of odd but barely possible theories.

What is the mass of the question mark?One useful heuristic is to check whether the opposite theory is equally likely or important: in that case they balance each other (yes, the world could be destroyed by me dropping a pen – but it could also be destroyed by not dropping it). In this case giving greater weight to suffering than neutral states breaks the symmetry: we ought to investigate this possibility since the theory that there is no moral considerability in elementary physics implies no particular value is gained from discovering this fact, while the suffering theory implies it may matter a lot if we found out (and could do something about it). The heuristic is limited but at least a start.

Another way of getting a cutoff for theories of suffering is of course to argue that there must be a lower limit of the system that can have suffering (this is after all how physics very successfully solved the classical UV catastrophe). This gets tricky when we try to apply it to insects, small brains, or other information processing systems. But in physics there might be a better argument: if suffering happens on the elementary particle level, it is going to be quantum suffering. There would be literal superpositions of suffering/non-suffering of the same system. Normal suffering is classical: either it exists or not to some experiencing system, and hence there either is or isn’t a moral obligation to do something. It is not obvious how to evaluate quantum suffering. Maybe we ought to perform a quantum-action that moves the wavefunction to a pure non-suffering state (a bit like quantum game theory: just as game theory might have ties to morality, quantum game theory might link to quantum morality), but this is constrained by the tough limits in quantum mechanics on what can be sensed and done. Quantum suffering might simply be something different from suffering, just as quantum states do not have classical counterparts. Hence our classical moral obligations do not relate to it.

But who knows how molecules feel?