Cool risks outside the envelope of nature

How do we apply the precautionary principle to exotic, low-probability risks?

The CUORE collaboration at the INFN Gran Sasso National Laboratory recently set a world record by cooling a cubic meter 400 kg copper vessel down to 6 milliKelvins: it was the coldest cubic meter in the universe for over 15 days. Yay! Applause! (And the rest of this post should in no way be construed as a criticism of the experiment)

Cold and weird risks

CrystalsI have not been able to dig up the project documentation, but I would be astonished if there was any discussion of risk due to the experiment. After all, cooling things is rarely dangerous. We do not have any physical theories saying there could be anything risky here. No doubt there are risk assessment of liquid nitrogen or helium practical risks somewhere, but no analysis of any basic physics risks.

Compare this to the debates around the LHC, where critics at least could point to papers suggesting that strangelets, small black holes and vacuum decay were theoretically possible. Yet the LHC could argue back that particle processes like those occurring in the accelerator were already naturally occurring almost everywhere: if the LHC was risky, we ought to see plenty of explosions in the sky. Leaving aside the complications of correcting for anthropic bias, this kind of argument seems reasonably solid: if you do something that is within the envelope of what happens in the universe normally and there are no observed super-dangerous processes linked to it, then this activity is likely fine. We might wish for careful risk assessment, but given that the activity is already happening it can be viewed as just as benign as the normal activity of the universe.

However, the CUORE experiment is actually going outside of the envelope of what we think is going on in the universe. In the past, the universe has been hotter, so there would not have been any large masses at 6 milliKelvins. And with a 3 Kelvin background temperature, there would not be any natural objects this cold. (Since 1995 there have been small Bose-Einstein condensates in the hundred nanoKelvin range on Earth, but the argument is the same.)

How risky is it to generate such an outside of the envelope phenomenon? There is no evidence from the past. There is no cause for alarm given the known laws of physics. Yet this lack of evidence does not argue against risk either. Maybe there is an ice-9 like phase transition of matter below a certain temperature. Maybe it implodes into a black hole because of some macroscale quantum(gravity) effect. Maybe the alien spacegods get angry. There is an endless number of possible hypotheses that cannot be ruled out.

We might think that such “small theories” can safely be ignored. But we have some potential evidence that the universe may be riskier than it looks: the Fermi paradox, the apparent absence of alien intelligence. If we are alone, it is either because there are one or more steps in the evolution of life and intelligence that are very unlikely (the “great filter” is behind us), or there is a high likelihood that intelligence disappears without a trace (a future great filter). Now, we might freely assign our probabilities to (1) that there are aliens around, (2) that the filter is behind us, and (3) that it is ahead. However, given our ignorance we cannot rationally give zero probability to any of these possibilities, and probably not even give any of them less than 1% (since that is about the natural lowest error rate of humans on anything). Anybody saying one of them is less likely than one in a million is likely very overconfident. Yet a 1% risk of a future great filter implies a huge threat. It is a threat that not only reliably wipes out intelligent life, but also does it to civilizations aware of its potential existence!

We then have a slightly odd reason to be slightly concerned with experiments like CUORE. We know there is some probability that intelligence gets reliably wiped out. We know intelligence is likely to explore conditions not found in the natural universe. So a potential explanation could be that there is some threat in this exploration. The probability is not enormous – we might think the filter is behind us or the universe is teeming with aliens, and even if there is a future filter there are many possibilities for what it could be besides low-temperature physics – but nearly any non-infinitesimal probability multiplied by the value of our species (at least 7 billion lives) tends to lead to a too large risk.

Precaution?

A tad chillyAt this point the precautionary principle rears its stupid head (the ugly head is asleep). The stupid head argues that we should hence never do anything that is outside the natural envelope.

The ugly head would argue we should investigate before doing anything risky, but since in this case the empirical studying is causing the risk the head would hence advice just trying out theoretical risk scenarios – not very useful given that we are dealing with something where all potential risk comes from scenarios unconstrained by evidence!

We cannot obey the stupid head much, since most human activity is about pushing the envelope. We are trying to have more and happier people than has ever existed in the universe before. Maybe that is risky (compare to Stapledon’s Last and First Men where it turned out to be dangerous to have too much intelligence in one spot), but it is both practically hard to prevent and this kind of open-ended “let’s not do anything that has not happened in the past” seems unreasonable given that most events are new ones and generally do not lead to disasters. But the pushing of the envelope into radically new directions does carry undefinable risk. We cannot avoid that. What we can do is to discuss whether we are willing to take on such hard to pin down risk.

However, this example also shows a way precaution can break down. Nobody has, to my knowledge, worried about cooling down matter besides me. There is no concerned group urging precaution since there is no empirical nor normative reason to think there is anything wrong specifically with CUORE: we only have a general Fermi paradox-induced inchoate worry. Yet proper precaution requires considering weak possibilities. I suspect that most future big new disasters will turn out to have avoided precautionary considerations just because there was no obvious reason to invoke the principle.

Conclusion?

Many people are scared more by uncertainty than actual risk. But we cannot escape it. Especially if we want to reduce existential risk, which tends to be more uncertain than most. This little essay is about some of the really tricky limits to what we can know about new risks. We should expect them to be unexpected. And we should expect that the standard decision methods will not behave sensibly.

As for the CUORE team, I wish them the best of luck to find neutrinoless double beta decay. But they should keep an eye open for weird anomalies too – they have a chance to peek outside the envelope of the natural in a well controlled setting, and that is valuable.

Anthropic negatives

Inverted cumulusStuart Armstrong has come up with another twist on the anthropic shadow phenomenon. If existential risk needs two kinds of disasters to coincide in order to kill everybody, then observers will notice the disaster types to be anticorrelated.

The minimal example would be if each risk had 50% independent chance of happening: then the observable correlation coefficient would be -0.5 (not -1, since there is 1/3 chance to get neither risk; the possible outcomes are: no event, risk A, and risk B). If the probability of no disaster happening is N/(N+2) and the risks are equal 1/(N+2), then the correlation will be -1/(N+1).

I tried a slightly more elaborate model. Assume X and Y to be independent power-law distributed disasters (say war and pestillence outbreaks), and that if X+Y is larger than seven billion no observers will remain to see the outcome. If we ramp up their size (by multiplying X and Y with some constant) we get the following behaviour (for alpha=3):

(Top) correlation between observed power-law distributed independent variables multiplied by an increasing multiplier, where observation is contingent on their sum being smaller than 7 billion. Each point corresponds to 100,000 trials. (Bottom) Fraction of trials where observers were wiped out.
(Top) correlation between observed power-law distributed independent variables multiplied by an increasing multiplier, where observation is contingent on their sum being smaller than 7 billion. Each point corresponds to 100,000 trials. (Bottom) Fraction of trials where observers were wiped out.

As the situation gets more deadly the correlation becomes more negative. This also happens when allowing the exponent run from the very fat (alpha=1) to the thinner (alpha=3):

(top) Correlation between observed independent power-law distributed variables  (where observability requires their sum to be smaller than seven billion) for different exponents. (Bottom) fraction of trials ending in existential disaster. Multiplier=500 million.
(top) Correlation between observed independent power-law distributed variables (where observability requires their sum to be smaller than seven billion) for different exponents. (Bottom) fraction of trials ending in existential disaster. Multiplier=500 million.

The same thing also happens if we multiply X and Y.

I like the phenomenon: it gives us a way to look for anthropic effects by looking for suspicious anticorrelations. In particular, for the same variable the correlation ought to shift from near zero for small cases to negative for large cases. One prediction might be that periods of high superpower tension would be anticorrelated with mishaps in the nuclear weapon control systems. Of course, getting the data might be another matter. We might start by looking at extant companies with multiple risk factors like insurance companies and see if capital risk becomes anticorrelated with insurance risk at the high end.

Galactic duck and cover

How much does gamma ray bursts (GRBs) produce a “galactic habitable zone”? Recently the preprint “On the role of GRBs on life extinction in the Universe” by Piran and Jimenez has made the rounds, arguing that we are near (in fact, inside) the inner edge of the zone due to plentiful GRBs causing mass extinctions too often for intelligence to arise.

This is somewhat similar to James Annis and Milan Cirkovic’s phase transition argument, where a declining rate of supernovae and GRBs causes global temporal synchronization of the emergence of intelligence. However, that argument has a problem: energetic explosions are random, and the difference in extinctions between lucky and unlucky parts of the galaxy can be large – intelligence might well erupt in a lucky corner long before the rest of the galaxy is ready.

I suspect the same problem is true for the Piran and Jimenez paper, but spatially. GRBs are believed to be highly directional, with beams typically a few degrees across. If we have random GRBs with narrow beams, how much of the center of the galaxy do they miss?

I made a simple model of the galaxy, with a thin disk, thick disk and bar population. The model used cubical cells 250 parsec long; somewhat crude, but likely good enough. Sampling random points based on star density, I generated GRBs. Based on Frail et al. 2001 I gave them lognormal energies and power-law distributed jet angles, directed randomly. Like Piran and Jimenez I assumed that if the fluence was above 100 kJ/m^2 it would be extinction level. The rate of GRBs in the Milky Way is uncertain, but a high estimate seems to be one every 100,000 years. Running 1000 GRBs would hence correspond to 100 million years.

Galactic model with gamma ray bursts (red) and density isocontours (blue).
Galactic model with gamma ray bursts (red) and density isocontours (blue).

If we look at the galactic plane we find that the variability close to the galactic centre is big: there are plenty of lucky regions with many stars.

Unaffected star density in the galactic plane.
Unaffected star density in the galactic plane.
Affected (red) and unaffected (blue) stars at different radii in the galactic plane.
Affected (red) and unaffected (blue) stars at different radii in the galactic plane.

When integrating around the entire galaxy to get a measure of risk at different radii and altitudes shows a rather messy structure:

Probability that a given volume would be affected by a GRB. Volumes are integrated around axisymmetric circles.
Probability that a given volume would be affected by a GRB. Volumes are integrated around axisymmetric circles.

One interesting finding is that the most dangerous place may be above the galactic plane along the axis: while few GRBs happen there, those in the disk and bar can reach there (the chance of being inside a double cone is independent of distance to the center, but along the axis one is within reach for the maximum number of GRBs).

Density of stars not affected by the GRBs.
Density of stars not affected by the GRBs.

Integrating the density of stars that are not affected as a function of radius and altitude shows that there is a mild galactic habitable zone hole within 4 kpc. That we are close to the peak is neat, but there is a significant number of stars very close to the center.

This is of course not a professional model; it is a slapdash Matlab script done in an evening to respond to some online debate. But I think it shows that directionality may matter a lot by increasing the variance of star fates. Nearby systems may be irradiated very differently, and merely averaging them will miss this.

If I understood Piran and Jimenez right they do not use directionality; instead they employ a scaled rate of observed GRBs, so they do not have to deal with the iffy issue of jet widths. This might be sound, but I suspect one should check the spatial statistics: correlations are tricky things (and were GRB axes even mildly aligned with the galactic axis the risk reduction would be huge). Another way of getting closer to their result is of course to bump up the number of GRBs: with enough, the centre of the galaxy will naturally be inhospitable. I did not do the same careful modelling of the link between metallicity and GRBs, nor the different sizes.

In any case, I suspect that GRBs are weak constraints on where life can persist and too erratic to act as a good answer to the Fermi question – even a mass extinction is forgotten within 10 million years.

Happy Petrov Day!

Nuclear war is badOn Practical Ethics I blog about Petrov Day: the anniversary of an avoided nuclear cataclysm.

The lovely thing about this incident is that there is a person to focus on, making existential risk dramatically real. The LessWrong community has developed a ritual to commemorate the event and make our individual responsibility for reducing existential risk more vivid.

Averted disasters are hard to see, so we need more and bigger monuments to people who averted things.